
DeployDirector
Version 2.6

Administrator’s Guide

World Headquarters
8001 Irvine Center Drive
Irvine, CA 92618
www.quest.com
email: info@quest.com

April 2003 STDDAG26

© Copyright Quest Software, Inc. 1999-2003. All rights reserved.

This guide contains proprietary information, which is protected by copyright. The software described in this
guide is furnished under a software license or nondisclosure agreement. This software may be used or copied
only in accordance with the terms of the applicable agreement. No part of this guide may be reproduced or
transmitted in any form or by any means, electronic or mechanical, including photocopying and recording
for any purpose other than the purchaser's personal use without the written permission of Quest Software,
Inc.

Warranty

The information contained in this document is subject to change without notice. Quest Software makes no
warranty of any kind with respect to this information. QUEST SOFTWARE SPECIFICALLY
DISCLAIMS THE IMPLIED WARRANTY OF THE MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. Quest Software shall not be liable for any direct, indirect, incidental,
consequential, or other damage alleged in connection with the furnishing or use of this information.

Trademarks

DeployDirector™ is a trademark Quest Software, Inc. Other trademarks and registered trademarks used in
this guide are property of their respective owners.

This product includes software developed by the Apache Software Foundation (http://www.apache.org/).

This product contains software developed by Jason Hunter (jhunter@servlets.com), copyright © 2001 Jason
Hunter. All rights reserved.

Redistribution of the com.oreilly.servlet package is permitted provided that the following conditions
are met:

1. You redistribute the package in object code form only (as Java .class files or a .jar file containing
the .class files) and only as part of a product that uses the classes as part of its primary functionality.

2. You reproduce the above copyright notice, this list of conditions, and the following disclaimer in
the documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR ‘‘AS IS’’ AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

http://www.apache.org/
mailto:jhunter@servlets.com

This product incorporates HTTP Client, a class library developed by Ronald Tschalär, copyright © 1996-
1999 Ronald Tschalär. Use of this library is governed by the terms of the Lesser General Public License a
copy of which may be found at http://www.gnu.org/licenses/lgpl.html.

This product incorporates Echidna, a class library developed by Luke Gorrie, copyright © Luke Gorrie. Use
of this library is governed by the terms of the Lesser General Public License a copy of which may be found
at http://www.gnu.org/licenses/lgpl.html.

This product incorporates software developed by Aron M. Renn, copyright © 1998 Aron M. Renn. Use of
this software is governed by the terms of the Lesser General Public License a copy of which may be found at
http://www.gnu.org/licenses/lgpl.html.

Quest Software

World Headquarters
8001 Irvine Center Drive
Irvine, CA 92618
www.quest.com
e-mail: info@quest.com
U.S. and Canada: 949.754.8000

Please refer to our Web site for regional and international office information.

http://www.gnu.org/licenses/lgpl.html
http://www.gnu.org/licenses/lgpl.html
http://www.gnu.org/licenses/lgpl.html
http://www.gnu.org/licenses/lgpl.html
http://www.gnu.org/licenses/lgpl.html
http://www.gnu.org/licenses/lgpl.html
www.quest.com
mailto:info@quest.com

About Quest
Quest Software, Inc. (NASDAQ: QSFT) is a leading provider of application management solutions. Quest
provides customers with Application Confidencesm by delivering reliable software products to develop,
deploy, manage and maintain enterprise applications without expensive downtime or business interruption.
Targeting high availability, monitoring, database management and Microsoft infrastructure management,
Quest products increase the performance and uptime of business-critical applications and enable IT
professionals to achieve more with fewer resources. Headquartered in Irvine, Calif., Quest Software has
offices around the globe and more than 18,000 global customers, including 75% of the Fortune 500. For
more information on Quest Software, visit www.quest.com.

Contacting Quest Software

Please refer to our Web site for regional and international office information.

Phone 949.754.8000 (United States and Canada)

E-mail info@quest.com

Mail Quest Software, Inc.
World Headquarters
8001 Irvine Center Drive
Irvine, CA 92618
USA

Web site www.quest.com

http://www.quest.com
mailto:info@quest.com
http://www.quest.com

Contents

 Chapter 1 Installation and Setup
Supported Platforms and General Requirements . 2

Server-Side Requirements and Hardware Considerations 2

Administrator Client Requirements . 4

Client-Side Platform Support and Requirements 4

An Overview of DeployDirector Installations . 6

Installing DeployDirector to Your Server . 8

Configuring and Running the Server-Side Component 11

Configuring and Running the Standalone Server 11

Running DeployDirector as a Servlet Engine with an Application Server 14

Installed Directories and Location of Key Files . 15

Accessing the Remote Administrator to Enter Your License 16

Deploying the Administration Tool to a Workstation . 19

A Note On Supported Browsers . 23

Netscape Navigator and Microsoft Internet Explorer 23

AOL . 23

Upgrading the DeployDirector Server . 24

Post-Installation Notes . 25

General Upgrade Practices . 26

 Chapter 2 Introduction
Overview of the Administrator’s Guide . 27

The Administration Tool . 29

Installing the Administration Tool . 30

Logging In to the Administration Tool . 30

Updating the Server . 31

Working with Bundles . 32

Administration Tool Date and Time Entry Formats 33

Defining Server-Based JREs . 34

Viewing Deployment Logs . 35

The Remote Administrator . 36
v

Introduction to the CAM . 37

CAM Roles . 37

Technical Support . 39

Contacting DeployDirector Support . 39

Contact information . 40

A Note About Our Transition . 40

 Chapter 3 Managing Servers and Clusters
SAM Roles and Responsibilities . 41

Server-Side Processes . 42

The Deployment Process from the SAM’s Perspective 42

The Server-Side Management Process . 43

Bundle and Log Replication . 44

The Rules of Engagement . 44

JRE Management . 45

Servers and Server Clusters . 47

Server-to-Server Messages within a Cluster . 48

Cluster and Server Properties . 48

Setting Basic Cluster Properties . 50

The Combined Effect of Server and Cluster Properties 53

The Client-Side Visibility of Servers in a Cluster 54

Transfer Groups . 58

Listing Servers in the Administration Tool . 58

Using the Servers List to Compile Transfer Groups 60

The Automatic Creation of Bundle Updates . 63

Understanding JAR Differencing . 63

Server Caching . 65

Running DeployDirector as a Windows Service . 66

 Chapter 4 Adding Bundles and Defining Bundle Content
Making Changes to the Vault . 68

Adding and Removing Bundles . 68

Basing New Bundles on Existing Bundles . 70

Adding Files and Directories to Bundles . 71
vi � Contents

 Chapter 5 Configuring Bundle Installation Properties
The Deployment of Bundles Via Web Browsers . 77

Introducing the Installer Applet . 77

Re-Signing the Installer and Launcher Applets . 78

Launching Applications . 80

The /launch Request . 80

Customizing the Install, Launch, and Error Pages . 81

The Error Page . 83

Passing URL Parameters to an Application . 84

Configuring Proxy Settings . 84

Configuring Browsers to Use Proxy Information . 86

Deploying with Proxies Present on the Network . 87

Passing Cookies to the Installer or Launcher Applet . 88

Configuring DeployDirector to Pass and Use Cookies 89

Configuring Bundle Installation Properties . 91

Setting Bundle Install Directories . 91

Designating License and Readme Files . 92

Determining how Bundles Affect Client Machine Settings 93

Configuring End-User Bundle Installation Options . 96

Bundle Installation Directories: Creation Strategies . 98

Enforcing Strict Bundle Installation Paths . 99

Allowing User-Defined Installation Paths . 99

Configuring Installation Directories for Use with the Launch Command 100

Extending Installation Options with Custom Classes 101

 Chapter 6 Configuring Bundle Runtime Properties
Defining Entry Points . 103

Bundle JRE Requirements . 104

Checking for JREs on the Client Side . 105

Sharing VMs Between Multiple Applications . 106

Sharing VMs: the Effect on the CAM’s Class Loader 107

The Share VM Property and the System Class Loader 107

Class Verification and Using the -noverify VM Parameter 107

Client-Side Exception Handling and Output . 108

Configuring Standard Exception and Output Destinations 108

End-User Authentication and Authorization . 109

The Authentication and Authorization Process . 110
vii

Setting Authentication Properties . 111

Setting Authorization Properties . 117

An Overview of Security in DeployDirector . 126

About SSL and Symmetric Encryption . 126

How Encryption Is Implemented in DeployDirector 126

SSL Support with DeployDirector . 127

SSL Notes and Encryption Resources . 128

DeployDirector’s SSL Components . 129

SSLFactory Method . 129

Default SSL Implementations . 129

Proxies, Socks and Firewalls . 130

Setting DD Encryption . 130

If Your SSL Library Is Not Supported . 131

If Your SSL Library Is Supported . 131

Overview of Data Validation . 132

 Chapter 7 Configuring Bundle Update Policies
The Client-Side Update Process . 133

Valid Connection Policy Settings . 134

Setting Bundle Connection Policies . 134

Setting Bundle Update Policies . 135

The Connection and Update Options from the User’s Perspective 136

CAM Update Example: Dependencies Between Bundle Versions 138

CAM Update Example: Effects of the Connection Policy 139

CAM Update Example: Effects of the Update Policy 140

 Chapter 8 Preparing Bundles and Servers for Deployment
Committing a Bundle to the Vault . 141

Preparing Bundles for Manual CD Installations . 142

An Overview of DARs . 142

Setting Up an Installation CD . 143

Installing an Application from a CD-ROM . 147

Using the DAR Command Line Tool . 148

dar convert: conversion of a WAR file to a DAR file 148

dar import: importing a WAR or DAR file to the server 149

dar export: exporting a bundle from the server as a DAR 150

dar create: creating a DAR . 151
viii � Contents

 Chapter 9 End User and Administrator Access
An Overview of User Authentication and Authorization 153

Authentication and Authorization Module Types 155

Client-Side Authentication Module and Editor Classes 155

Server-Side Authentication Module and Editor Classes 156

Authorization Module and Editor Classes . 157

Group Authorization Module and Editor Classes 158

Authorization Behavior and Allowable Bundle Version Names 159

Authentication and Authorization Configuration Files 160

End-User and Administrator Authentication Lists . 160

Viewing Authentication Lists . 161

Managing Authentication Lists . 163

Viewing End-User Bundle Associations . 168

Default and Alternate Views of End-User Associations 169

Displaying Bundles . 171

Displaying Users and Groups . 176

Selecting Bundle Versions . 180

Managing End-User Bundle Access . 181

Authorizing Users or Groups to Access Bundle Versions 181

Viewing Administrator Roles . 183

Default and Alternate Views of Administrator Associations 184

Displaying Users and Groups . 185

Managing Administrator Access . 188

Defining Bundle Administrators . 188

Defining Server Administrators . 190

An Emphasis On Server Updating and Refreshing . 191

Customizing the Default Module and Editor Classes 192

 Chapter 10 Viewing and Managing Logs
Overview of DeployDirector Logs . 193

Clients Database . 193

Client Log . 195

Server Log . 196

Server Load Log . 198

Configuring Log Generation and Storage . 200

Configuring Logging Methods . 200

Configuring Logging Limits . 203
ix

Configuring Log Writing Frequency . 204

Overriding Cluster Logging Settings for a Server 205

Directing Email Error Reports . 207

Configuring Email Error Logging at the Cluster and Server Level 207

 Chapter 11 Customizing Functionality with the SDK
Deploying the SDK Files to Your Workstation . 212

Overview of SDK Components . 212

Client Application Classes (ddcam.jar) . 213

Copy of SAM JAR (ddsam.jar) . 214

SDK Java Packages and API . 214

Adding Update Checking To Applications . 215

CAMMenuItem and CAMJMenuItem Classes . 216

CAMAction Class . 217

Advanced Update Checking for Applications . 218

Other Useful CAMAccess Methods . 218

Client-Side and Server-Side Authentication . 219

Custom Authorization Modules . 220

Overview of the com.sitraka.deploy.authorization Package 220

Creating a New Authorization Module . 221

Using Secure Socket Encryption . 224

Overview of the com.sitraka.deploy.ssl Package 224

Using JSSE, SSL-J or IAIK Encryption . 225

Using a Site-Specific Encryption System . 226
x � Contents

 Chapter 1
Installation and Setup

his introductory chapter contains information on system requirements,
product installation, license setup and Administration Tool deployment.
For current release information (including new features and known

problems), please refer to the readme.

Important: If you are upgrading your version of DeployDirector, please first
refer to Upgrading the DeployDirector Server on page 24 to ensure you have
properly migrated your DeployDirector data, and have prepared your system
for a new installation.

T

Installation and Setup � 1

Supported Platforms and General Requirements
DeployDirector requires the installation of components on both the client and
server sides, which includes components for the server, administrator
workstations, and regular clients to which applications will be deployed.

The following sections list supported platforms for these three installation
destinations, and outline issues that should be considered when allocating
hardware resources for all areas your deployment network.

Server-Side Requirements and Hardware Considerations
While DeployDirector supports a variety of servers and Web server
environments, it is important to consider how aspects of your organization’s
hardware and network infrastructure can affect overall performance of the
deployment system. Since each organization’s hardware resources and
implementation of DeployDirector will vary, specific considerations are list, for
which general guidelines are offered.

Note: DeployDirector is not tested with plugin Web servers. However,
DeployDirector can be expected to work if the Web and application server
combination is already working properly.

Java requirements: DeployDirector’s server-side components have been
implemented entirely in Java (JDK 1.2 or greater). As such, these components
should work on any fully Java-compliant platform.

Storage requirements: Storage requirements are dependent on the number and
size of JREs and bundle versions managed by DeployDirector, as well as the
amount of work space allocated to some functions. The following items or
settings affect server-side storage requirements:

� The core DeployDirector server files require ~37MB of storage space.

� The uncompressed JREs, which are included with the DeployDirector
installation, require ~53MB of storage space. Additional space will
obviously be needed for other (uncompressed) JREs that your
administrators will add after initial installation.

Tested Platforms: Tested Application Servers:

HP-UX 11 BEA WebLogic 6.1, 7.0, 8.1

IBM AIX 5.1 IBM WebSphere 5.0

RedHat Linux 7.2, 8.0 Apache Tomcat 4.1.18

Solaris 2.8, 2.9 SunONE 7.0

Windows 2000

Windows NT 4.0 (SP6)
2 � Chapter 1

� The number and size of bundles and bundle versions (in an uncompressed
form) that your organization plans to manage with DeployDirector.

� The amount of cache space allocated to DeployDirector functions.

� The amount of storage space allocated to logs.

Memory requirements: While it is difficult to state the memory requirements of
the DeployDirector server components, the base requirement is dependent on
the JDK used to run them. This base amount increases with each bundle that is
added to the vault, and that increase is dependent on the content of the bundle
that is added.

CPU requirements Some of the factors that affect CPU usage include:

� bundle content,

� compression ratios,

� caching limitations,

� the number of queries made to the server.

Despite the variety of factors, as a rule, a ratio 1 CPU for every 500 clients
should suffice in most cases.

Network configuration: The network environment in which DeployDirector is
installed has a significant effect on its server-side performance.

For example, if a firewall or proxy exists between the server and clients,
network throughput will be slowest at either the server or the firewall. As
another example, when clustering is used, and the client load is evenly
distributed to the servers in the cluster, the actual network throughput
requirements of any one server is the total throughput requirement divided by
the number of servers in the cluster.

It is recommended that your organization’s network administrators assess
existing configurations, and determines what modifications may better
accommodate a deployment system.

Network throughput: This factor has the most significant impact on server
performance. There are several issues that should be considered:

� the number of clients that exist, and will exist in the future,

� the size of the initial client download,

� the size and frequency of updates,

� whether or not installations and updates will be staggered,

� whether clients will download JREs at the time of bundle installation, or if
pre-installed JREs will be used,

� how often clients may be contacting the server,

� the connection / data throughput of the Web or application server being
used.
Installation and Setup � 3

Administrator Client Requirements
The Administrator client is the workstation on which the DeployDirector
Administration Tool is installed.

Memory Requirements: The recommended amount listed above should suffice
to manage the base footprint of the Administration Tool (~26MB), the
version.xml file of each bundle that is expanded in the Administration Tool’s
Bundle tab, and the creation of bundles and/or DARs.

Note: The amount of memory required for the last two tasks is proportional to
the size and complexity of the bundle that is expanded or being modified.

Client-Side Platform Support and Requirements

Tested Platforms: Hardware and JRE Requirements

Windows 2000 64MB RAM (see note below)

Windows NT Workstation 4.0 (SP6) 30MB hard drive space (plus free
hard drive space for bundle
construction or DAR exporting)

Windows XP

JRE 1.4.1 only

Tested Platforms: Supported Browsers

IBM AIX 5.1 Internet Explorer 5.0 or greater

RedHat Linux 7.3, 8.0 Netscape Navigator 4.7 or greater

Solaris 2.8, 2.9

Windows 2000 Supported Desktop Environments:

Windows 98 SE Windows, KDE, Gnome, CDE

Windows NT Workstation 4.0 (SP6)

Windows XP Client Requirements:

Mac OS X DeployDirector’s client-side JDK 1.2
components have been tested with
and greater.

HPUX 11
4 � Chapter 1

Storage Requirements: When a bundle is being deployed to a client machine,
the total storage required for that session includes the size of the following:

� the uncompressed bundle,

� the DDCAM (~600KB),

� any JRE that is accompanying the bundle (if at all).

The most important consideration for the amount of storage space available on
the client side is the size of the bundles that you plan on deploying. (Bundles
require storage space of about two and a half times their size.)

Memory Requirements: When a bundle is being deployed to a client machine,
the total memory required for that session includes the size of the following:

� the base footprint of the JVM being used for the installation,

� the footprint of the DDCAM,

� the footprint of the application being deployed.

While the memory requirements of the DeployDirector components are small,
requirements are once again heavily dependent on the bundles that you plan
on deploying (specifically, the bundle and required JRE memory needs).
Installation and Setup � 5

An Overview of DeployDirector Installations
DeployDirector consists of several core components, all of which need to be
installed whether you are setting DeployDirector up in a test or production
environment. It is the environment in which DeployDirector is being tested or
used that determines where specific components are installed and configured.

The Server-side Application Manager (SAM) is the servlet that directs traffic to
and from an application server. As such, it can either be installed and
configured to run with the bundled standalone server, or on top of a
commercial server. (The bundled standalone server can act as a server in both a
test environment, as well as an actual deployment network.)

The Client-side Application Manager (CAM) resides on client-side machines,
and works with the SAM to receive bundles. This component is automatically
installed on any client machine during the deployment of a bundle.

The Administration Tool is used to manage server-side activities, particularly
bundle maintenance. The tool is meant to be installed on an administrator’s
workstation, and can either be set up via the DeployDirector installation CD, or
can be deployed as a bundle.

Whether this installation is a test run or for production, installing
DeployDirector involves:

� unarchiving DeployDirector onto a server (a test workstation running the
standalone server, or a production server running the standalone server or
another application server),

� verifying and changing default configuration settings,

� deploying the Administration Tool (which includes automatic deployment
of the CAM) to a designated administrator’s workstation.

The following diagrams outline typical deployment environments. They in turn
determine where DeployDirector components are installed (steps 1 and 2), and
where deployment is managed, and occurs (steps 3 and 4).

CAM
bundle

CAM
bundleCAM

clients

bundleDeployDirector

Vault

server

SAM
administration tool

CAM

admin workstation
6 � Chapter 1

administration tool
CAM

workstation

workstation

CAM
bundle

CAM
bundleCAM

clients

bundle

CAM
bundle

CAM
bundleCAM

clients

bundle

CAM
bundle

CAM
bundle

administration tool
CAM

workstation

CAM

clients

bundle

This setup is identical
to the previous model,
with the exception that
DeployDirector is
running as a servlet
on top of a
commercial
application server
instead of the bundled
standalone server.

Used as a realistic test
or true production
environment, this
model consists of a
SAM and admin tool
installed on (1), and
deployed to (2), their
own dedicated
machines.

Model 3: Installation on test or production server with Tomcat, deployment to true clients.

Model 2: Installation on test workstation, deployment to true clients.

Model 1: Installation on, and deployment to single test workstation.

On a test workstation, DeployDirector is installed
and the standalone server is configured as the
deployment server (1). The administration tool is
deployed to the same workstation (2), and is used
to access the SAM (3). Test bundles are deployed
to the same machine (4).

In this model, the same machine acts as
application server, administrator's workstation,
and client machine.

2

workstation

SAM
standalone server

CAM
administration tool

CAM
bundle

1

workstation / server

Model 4: Installation on, and integratation with commercial application server, deployment to true clients.

SAM
standalone server

1

SAM
standalone server

CAM
administration tool

1

server

SAM
application server

1

4

3

2
3 4

4

4

2

3

2

3

On a test workstation, DeployDirector is installed
and the standalone server is configured as the
deployment server (1). The administration tool is
deployed to the same workstation (2), and is used
to access the SAM (3). Bundles are deployed to
any number of clients (4).

This model allows mass test deployments to a
network of clients, while maintaining simplicity by
allowing the same machine to act as both server
and admin workstation.
Installation and Setup � 7

Installing DeployDirector to Your Server
The DeployDirector CD includes automated installers for various supported
platforms, as well as archives from which manual installations can be performed
(deploydirector.zip and deploydirector.tgz).

The following procedure covers the general installation of DeployDirector with
the standalone server via the automated installer.

Note: Situations that call for a manual DeployDirector installation typically
involve its use as a servlet engine with an application server.

1. Insert the DeployDirector installation CD into your CD-ROM drive, and
wait for auto-run feature to begin. Alternatively (or if you are using a
downloaded evaluation version), locate and run the installer for the
appropriate platform.

For Windows: If the auto-run feature does not initiate the installation
process automatically, choose Start > Run. Locate the
windows_dd_250.exe file at the root of the DeployDirector CD, select
it, then click OK to begin the installation.

For Unix: Run the bin file whose name matches the platform on which
you are installing DeployDirector. These files are found at the root of
the DeployDirector CD.

Note: In order to mount a CD in HP-UX, you will have to enter the
following commands:
su (This will put you in the “super user” mode. You will need to supply
the root password.)
mkdir /cdrom (You probably want to add this directory at the root of
the drive.)
mount -F cdfs -o cdcase /dev/dsk/cdrom_device /cdrom
(where cdrom_device is listed in the output of the ioscan -f -n
command.)

To unmount the CD, you will need to enter the following command:
unmount /cdrom (where /cdrom is the location where you mounted
the CD).
8 � Chapter 1

When the setup program runs, after accepting the terms of the License
Agreement, you are asked to select which product feature you want to
install:

2. Select DDServer, then click Next to begin installing the DeployDirector
Standalone Server.

3. Confirm or modify the base install directory, then click Next.

All of the DeployDirector server-side components will be installed in
this location.
Installation and Setup � 9

4. Indicate what type of shortcuts you would like to have created.

Links to all relevant items, including the Administration Tool and
documentation, will be placed in the chosen group.

5. Review the Summary, then click Install.

The server-side DeployDirector components will be installed based on
the choices made during this installation process. Once the installation
process has completed, the DeployDirector install wizard will hand off
duties to the Configuration Wizard.
10 � Chapter 1

Configuring and Running the Server-Side Component
If you plan to use DeployDirector with the included standalone server, you can
use the Configuration Wizard to easily enter information about the machine on
which the standalone server is running. If you plan on integrating
DeployDirector with another application server, you can contact technical
support for the latest information on using DeployDirector with supported
application servers.

Configuring and Running the Standalone Server
The standalone server is pre-configured, installed with your distribution, and is
an excellent way of quickly establishing your deployment network, or a test
environment.

Before running the standalone server, you need to configure settings that
indicate the host name and port of the server on which it is running. This is
done quickly and easily with the Configuration Wizard. When DeployDirector
is successfully installed, you will be asked whether you wish to run the
Configuration Wizard. The text field in the left pane of the Configuration
Wizard provides relevant explanations at each step.

If you choose to run the Configuration Wizard, it will guide you through the
configuration process.
Installation and Setup � 11

The Configuration Wizard first prompts you to indicate which JDK is to be
used with the DeployDirector server. Click Update to have the Wizard list all
found JDKs on the machine on which DeployDirector has been installed:

The Wizard next prompts you for the name of the machine as identified on the
network, along with the port setting, and preferred protocol. If you wish to
enabled SSL, you will require a certificate, which you can either designate, or
generate.

You will also be able to enter the path to the Administrator’s Page (/servlet/
is the default setting), and indicate whether you want advanced server encoding
to be used.
12 � Chapter 1

You are now required to enter the license information provided by Quest
Software. If this is a temporary license for evaluation purposes, please note that
you will subsequently be able to update license information from the Remote
Administrator in your browser.

Error emailing is another useful feature provided by DeployDirector. If an error
occurs on the server or client side, the network administrator will be notified if
this is enabled in the Configuration Wizard. (You still can modify error emailing
lists after DeployDirector has been installed, through the Remote
Administrator.)

Once all of these details have been configured, you may review them all in the
Configuration Summary screen. After confirming these settings, the configured
standalone server will be ready to run.
Installation and Setup � 13

The server can be started by using the startup shortcut that was created, or by
executing the startup batch file found in the standalone server directory of the
DeployDirector installation.

Running DeployDirector as a Servlet Engine with an
Application Server
While the standalone server offers a quick and easy way to establish your
deployment network, you may want the added configuration benefits of a
commercial Web server, with which DeployDirector can function as an add-on
servlet engine.

Supported servers are listed in Supported Platforms and General Requirements,
found earlier in this chapter. For the most up-to-date information on integrating
DeployDirector with any of these Web servers, please contact DeployDirector
Technical Support:

Quest Software Web Site (Java
Products, DeployDirector Support):

http://java.quest.com/support/deploydirector/

North American
Support Information:

dd_support@sitraka.com
800-663-4723 (toll free in North America) or 416-594-1026
Monday to Friday, 9:00 a.m. to 8:00 p.m. EST
Fax: 416-594-1919

European Support
Information:

Email: eurosupport@sitraka.com
Phone: +31(0)20 510 67 00
Monday to Friday 9:00 a.m. to 5:00 p.m. CET
Fax: +31 (0)20 470 03 26
14 � Chapter 1

http://java.quest.com/support/deploydirector/
mailto:dd_support@sitraka.com
mailto:eurosupport@sitraka.com

Installed Directories and Location of Key Files
The following outlines the contents of the DeployDirector installation:

Once DeployDirector has been installed, you may want to work with individual
files to customize DeployDirector to match the needs of your organization. The
following outlines the locations of the key files that you can customize, or on
which your deployment process will depend:

* If you are deploying bundles for non-evaluation purposes, you will need to re-
sign the installer with your own organization’s certificate. By default, a Quest
Software certificate is used.
Installation and Setup � 15

Accessing the Remote Administrator to Enter Your License
The Remote Administrator gives you control over any DeployDirector-enabled
server on the network. While its primary use is for server and cluster
maintenance, as well as viewing logs, you can also use it to view and change
your DeployDirector license.

Whether you are evaluating or have purchased DeployDirector, a member of
Quest Software’s sales or technical support team will have provided you with a
license to use.

Note: At the time you enter this license, it is also a good idea to change the
administrator password.

In a previous section, you configured and began running the standalone server.
(If you have since shut it down, please restart it.) You can access that server with
the Remote Administrator from any Web browser.

Invoking the Remote Administrator:

1. Ensure the server on which DeployDirector was installed is running.

2. In your Web browser, load the Remote Administrator by entering this
URL:

http://[your_host_name]:8080/servlet/admin/index.jsp

In this address, [your_host_name] indicates the host name property
you set in the Configuration Wizard in the previous section. This
distribution uses port 8080, but if your server is configured to use
another port, use that number instead.

Please note that the /servlet/ path is a default setting which refers to
the path for the Remote Administrator, set in the Configuration Wizard
in the previous step.
16 � Chapter 1

3. When prompted, enter your administrator user name and password to load
the main Remote Administrator page. (The default user name entered is
ddadmin, and the default password is f3nd3r.)

This is an HTML-based front end with which deployment network
information can be accessed, and settings can be made. In this case, you
want to enter a new license, as well as change the administration
password.

Changing the DeployDirector license:

1. From the main Remote Administrator page, click the Upload link.

The License: Upload page appears, prompting you to enter the path, or
browse for the license file provided by Quest Software.
Installation and Setup � 17

2. Enter the path, or navigate to the license file.

3. Click Install License.

The Remote Administrator confirms that a valid license has been
entered.

4. Click the Restart Server link. Once restarted, click the Main Admin Page
link to return to the main Remote Administrator Page.

Now that you have successfully entered your license, and restarted your
server, you can change the administrator password used to access the
Remote Administrator.

Changing the administrator password for the Remote Administrator:

1. Ensure you are viewing the main Remote Administrator page.

2. Click the Admin Account link.

3. Enter f3nd3r as the old default password.

4. Enter your new password information.

5. Click Submit and wait for confirmation that the new password has been
accepted.

6. Click the Restart Server link. Once restarted, click the Main Admin Page
link to return to the main Remote Administrator Page.

Now that the password has been changed to your own, all
administrative functions have been taken care of, and you now can
begin to deploy DeployDirector bundles to complete the installation of
the product.
18 � Chapter 1

Deploying the Administration Tool to a Workstation
Once the server on which DeployDirector was installed is ready to serve up
data (whether driven by the standalone server, or another application server),
the Administration Tool can then be deployed to a system administrator’s
workstation. While the Administration Tool is an application bundle that only
system administrators will use, its underlying deployment process is identical to
any other bundle your organization will deploy.

The Administration Tool can be deployed to a system administrator’s
workstation by using the Remote Administrator. If you have just completed the
steps outlined in the previous section, your Remote Administrator is connected
to the server on which DeployDirector was installed.

The workstation you use to connect to DeployDirector on the server is the one
on which you want to install the Administration Tool. If you are running the
Remote Administrator on the desired workstation, please skip to step 4,
otherwise, follow the steps as described.

1. Ensure the server on which DeployDirector was installed is running.

2. From the machine on which you wish to install the Administration Tool
bundle, enter this URL in your Web browser:

http://[your_host_name]:8080/servlet/admin/index.jsp

In this address, [your_host_name] indicates the DeployDirector host
name property you set in the Configuration Wizard previously in this
installation. This distribution uses port 8080, but if your server is
configured to use another port, use that number instead.
Installation and Setup � 19

3. When prompted, enter your admin user name and password to load the
main Remote Administrator Page.

4. Navigate to the Bundle: View page to display all the bundles available for
deployment from the server.

5. Click the install link for the DDAdmin bundle.
20 � Chapter 1

6. Instead of navigating to the DDAdmin bundle install page, you also can
enter this URL:

http://[your host name]:8080/servlet/deploy/ddadmin/install

This URL follows the DeployDirector convention for sending bundle
requests to the SAM from a client browser. The deploy/ddadmin/ portion
indicates that a bundle is being requested, and that bundle is the
Administration Tool. The /install portion of the URL is a command that
triggers the client-side installation routine for that bundle (a routine whose
files are found in the install.jar or install.cab file).

When a download and install request is generically sent (i.e. no specified
version number is requested) as with this example, the SAM refers to the
versions.lst file (created and found in all main bundle directories). From
this file, the version listed at the top of the file is deployed.

7. Accept the signed certificates.

8. Accept the terms of the license agreement.

9. Select or create a destination directory on your workstation hard drive for
the Administration Tool.
Installation and Setup � 21

Once you have indicated where the Administration Tool is to be
installed, the SAM checks to see if a CAM already exists at that
installation location. If it does not find one (which is likely, considering
you are installing the Administration Tool for the first time), the latest
version of the CAM is sent. Until the end of the installation, the CAM
assumes responsibility for all deployment actions.

10. If you are using a proxy, enter its host name, the port on which it can be
found, and list any host names that can be reached without its use. If your
proxy uses SSL, enter the same type of information in the designated fields.
This information will be used by the Administration Tool whenever it
connects to the server

If entering non-proxy host names, ensure that:

� entries are separated with “|”
� host names and IP addresses are valid (e.g.

11.22.33.44|www.quest.com)
� in order to support the use of wildcards, the host name starts with “.”

(e.g. entering “.quest.com” will match any host name that is
*.quest.com, such as www.quest.com, or ftp.quest.com.

11. Indicate whether you want an Administration Tool desktop shortcut to be
created.

Now that all the required information has been gathered, the
Administration Tool is installed on your workstation.

After viewing the readme, the installation will be complete. You can run
the Tool by selecting it from the Start Menu, or double-clicking its
desktop icon (if available).
22 � Chapter 1

A Note On Supported Browsers

Netscape Navigator and Microsoft Internet Explorer
The browser installed on the client side must be Java-enabled, i.e. the option to
install the JVM must be selected during browser installation. Otherwise, either
reinstall the browser to include the JVM, or follow the instructions for AOL
clients on how to use the Java Plug-in for client-side installation and launching
of the bundles.

AOL
For end users: AOL 6.0 clients require the Java Plug-in from Sun
Microsystems in order to install and launch applications from the
DeployDirector server. The following format should be used instead of the
install and launch requests:

http://[server_name]:[port]/servlet/deploy/[bundle_name]/install-plugin

http://[server_name]:[port]/servlet/deploy/[bundle_name]/launch-plugin

If the Java Plug-in is already present on the client side, the end user can install
and launch applications from the DeployDirector server. Otherwise, the end
user is presented with an option of downloading and installing the Java Plug-in,
before proceeding with the installation or launching of the bundle.

For system administrators: Whenever a new version of the Java Plug-in is
released by Sun Microsystems, it will be the decision of the network
administrator whether to upgrade on the server and client sides. The
administrator will need to obtain the following four parameters from Sun
Microsystems and modify them in the cluster.properties file located in the
<localdrive>/<installpath>/deploydirector directory:

deploy.applet.javaplugin.ie.classid=clsid:8AD9C840-044E-11D1-B3E9-
00805F499D93

deploy.applet.javaplugin.ie.codebase=http://java.sun.com/products/
plugin/1.3/jinstall-13-win32.cab#Version=1,3,0,0

deploy.applet.javaplugin.type=application/x-java-applet;version=1.3

deploy.applet.javaplugin.ns.pluginspage=http://java.sun.com/products/
plugin/1.3/plugin-install.html

If the version of the Java Plug-in on the client side does not match the
specifications within the cluster.properties file, the client will be prompted
to install the new version of the Java Plug-in from Sun Microsystems.
Installation and Setup � 23

Upgrading the DeployDirector Server
The following procedure outlines how to upgrade DeployDirector from a 1.x or
2.0.x installation to 2.5. The following assumptions have been made:

� you are testing the upgrade in a separate-non production environment,

� you are installing DeployDirector 2.5 to a machine that currently has an
older version installed on it,

� you will be using the same port as your existing DeployDirector install,

� the Administration Tool for your existing installation is working.

Performing the upgrade manually

1. Close the Administration Tool, and shut down the old server and any of its
dependent applications.

2. Install the version of DeployDirector to which you are upgrading on that
machine. You will need to back up your existing 1.x or 2.0.x server if you
are re-installing to the same location.

3. In the new server installation, modify the cluster.properties file to
indicate your machine name and anything else required for your setup.
This should be very similar to the cluster.properties file for your old
installation.

Do not start up the new server yet.

4. Go to the old DeployDirector version’s vault directory and copy the
bundles.lst file and any bundles other than DDAdmin, DDCAM and
DDSDK (these three bundles are treated differently as outlined in step 6).

5. Paste these old bundles into the new version's vault directory.

6. To copy the DDAdmin, DDCAM and DDSDK bundles, go to the old
DeployDirector version’s vault directory, and instead of copying the bundle
directory (e.g. DDCAM), copy the bundle’s version directory (e.g. 1.5.3).

7. Paste the copied version directory into the directory of the appropriate
bundle in the 2.5 vault directory.

8. For each of the DDAdmin, DDCAM, and DDSDK bundles, modify the
versions.lst file in the new vault so that the list now includes the new
version number (e.g. 2.5) as an entry above the old version number
(eg.1.5.3).

In the versions.lst file, the top version is always the most current
version.
24 � Chapter 1

9. Start up the new installation of the server. You will have to license the new
server using the Remote Administrator, which is covered on page 16.

10. Start up the same Administration Tool that you used before and it should
update itself to the new version.

Performing the upgrade using DAR import and export commands

1. Start up the old server (i.e. the DeployDirector version that is being
replaced).

2. Export all versions of every bundle you wish to migrate to the new system.

3. Shut down the old server, and any of its dependent applications (including
the Administration Tool).

4. Install the version of DeployDirector to which you are upgrading on that
machine. You will need to back up your existing 1.x or 2.0.x server if you
are re-installing to the same location.

5. In the new server installation, modify the cluster.properties file to
indicate your machine name and anything else required for your setup.
This should be very similar to the cluster.properties file for your old
installation.

6. Start up the new installation of the server. You will have to license the new
server using the Remote Administrator, which is covered on page 16.

7. Once the server is running, use the Remote Administrator or the
Administration Tool, use import the DARs you have created.

Post-Installation Notes
� To test this new installation, you can start up one of the client application

bundles you had previously installed via the older version of
DeployDirector. The CAM for this application should be updated and the
application should start up.

� It is strongly recommended that you upgrade the server and let the clients
connect so that a CAM update can occur before you publish a new version of
the application bundle to the server.

� You may want to note any dialogs that appear as the CAM is updating. It
may help you to document what the customer experience will be.

� If any of the assumptions above do not apply to your situation, or you feel
that your environment requires special upgrade considerations, please
contact Quest Software Technical Support. Contact information can be
found in page 39.
Installation and Setup � 25

General Upgrade Practices
If you are installing DeployDirector over a previous installation (whether or not
it is an older version), to ensure a smooth transition to a new installation, please
ensure you have:

� deleted all previous DeployDirector bundles,

� saved a copy of your cluster.properties file, located in the root
deploydirector directory, which contains your licensing information (this
file can be recopied over the new cluster.properties, which saves you
the trouble of re-licensing your copy of DeployDirector),

� deleted all instances of DeployDirector from your server.

Previous customers can use the transfer commands in the Administration Tool
to move the vault, authentication and authorization data, configuration files,
and (if compatible) license from an old server to the new one. Information on
transfer groups can be found in Transfer Groups in Chapter 3.
26 � Chapter 1

 Chapter 2
Introduction

elcome to the DeployDirector Administrator’s Guide. Within this
guide, you will find conceptual and procedural information about
managing and configuring bundles for deployment, as well as

maintaining and administrating your deployment network.

Overview of the Administrator’s Guide
The concepts in this guide are presented with the assumption that you have
already consulted Chapter 1, Installation and Setup, for setup information and
product orientation. It offers all the required information to set up a Server-side
Application Manager on your deployment server, as well as the Administration
Tool on a system administrator’s workstation.

This chapter introduces several basic concepts for use with, or about,
DeployDirector or the Administration Tool. Once you have read through this
chapter, you should have the knowledge required to begin setting up your
organization’s deployment network, for which more detailed information can
be found later in this guide.

Chapter 3, Managing Servers and Clusters, begins with an overview of the
Server-side Application Manager (SAM) and server-side functions. An
introduction to the server-side property files is given, followed by server and
cluster configuration procedures using the Administration Tool.

Chapter 4, Adding Bundles and Defining Bundle Content, discusses making
changes to the vault, as well as adding files and directory structures to bundles.

Chapter 5, Configuring Bundle Installation Properties, offers concepts and
procedures that pertain to the deployment process on the client-side, and the
Client-side Application Manager (CAM). This includes an overview of the
installer applet and the launcher applet, as well as the configuration of bundle
installation properties.

W

27

Chapter 6, Configuring Bundle Runtime Properties, provides detailed information
about bundle properties that take effect when an application is started. This
includes procedures related to JRE requirements, VM sharing, authentication
and authorization. Additionally, a brief overview of deployment security issues
and implementations is provided.

Chapter 7, Configuring Bundle Update Policies, gives detailed information and
examples about setting update and connection properties for bundles.

Chapter 8, Preparing Bundles and Servers for Deployment, discusses how to
upload bundles to vaults, and creating installation CDs for bundles.
Additionally, information on the DAR command line tool is given.

Chapter 9, End User and Administrator Access , gives a full overview of
DeployDirector’s default authentication and authorization modules/classes and
their applications. Building on this knowledge, the use of the Administration
Tool to manage administrator roles and end-user access to bundles is covered.

Chapter 10, Viewing and Managing Logs, summarizes DeployDirector’s
deployment log types, and viewing them in the Administration Tool’s reporting
tool or the Remote Administrator. Additionally, detailed information about
email error reporting is provided, and illustrated with various configuration
examples.

Chapter 11, Customizing Functionality with the SDK ,is a users guide for the
DeployDirector SDK. This chapter contains programming examples meant to
complement the API information that is part of the SDK bundle.
28 � Chapter 2

The Administration Tool
The Administration Tool is DeployDirector’s primary bundle management tool.
It allows you to configure all aspects of deployment bundles. By using the
Administration Tool, you can connect to any deployment server on your
network from your workstation.

Once a connection with a server has been established, the contents of that
server’s vault can be seen and configured in the Administration Tool. Tasks that
can be performed with the Administration Tool include:

� updating the server to which you are connected with any changes you
make,

� adding and removing bundles from a server’s vault,

� creating new bundles, and setting their deployment properties,

� configuring the client-side bundle installer applet,

� selecting which Java Runtime Environments exist on the server,

� viewing deployment logs.

The remainder of this chapter describes how these tasks are carried out with the
Administration Tool. When visiting some of these tasks, you will be referred to
other chapters in this Administrator’s Guide where more detailed conceptual
and procedural information can be found.
Introduction � 29

Installing the Administration Tool
The Administration Tool was installed to a system administrator’s workstation
during DeployDirector installation and setup. You can install the
Administration Tool on as many workstations as you require. Please refer to
Deploying the Administration Tool to a Workstation in Chapter 1 for more
information.

Logging In to the Administration Tool
Whenever the Administration Tool is started, you are required to enter user
information, and select a server. When DeployDirector is first installed, the
default user name and password (respectively, ddadmin and f3nd3r) can be
used, but it is recommended that these are changed using the Remote
Administrator, as outlined in Accessing the Remote Administrator to Enter
Your License in Chapter 1.

The Administration Tool can connect to any online server on which
DeployDirector was installed. Enter the server address, use the drop-down list
to locate a previously inputted server.
30 � Chapter 2

Updating the Server
When using the Administration Tool to configure bundles for eventual
deployment, any bundle changes are initially made locally (i.e. your
workstation’s hard drive). Only when you update the server with the local
changes you have made will the server reflect your actions in the
Administration Tool.

This process is designed to act as a safeguard against potential errors to which
several factors contribute. It is possible, if not typical, that several deployment
servers exist as part of your organization’s deployment network. System
administrators can access the contents and properties of any server at any time.
Additionally, any changes made to a server are replicated across the
deployment network to ensure that client-side users have access to the same
bundles, no matter which server deploys them. Thus, in order to avoid the ill
effects of two system administrators simultaneously modifying vault contents on
different servers that are part of the same cluster, modifying the contents of the
vault is performed on a local machine. Additionally, it is important that changes
being made to a bundle be completed before committing them to a server.

For more information about bundle replication, please refer to Chapter 3,
Managing Servers and Clusters.

Committing changes to the server

1. Ensure all changes you have made in the Administration Tool are correct
and complete.

Once changes have been committed to the server, they will be
replicated across the deployment network to all other servers. Thus, it is
critical that changes you make are accurate. This is particularly
important with bundle versions you create since they cannot be
modified (only removed) after being uploaded to the server.

2. Click File > Update Server.
Introduction � 31

Working with Bundles
One of the more common tasks performed with the Administration Tool is
changing the contents of the vault. The Administration Tool simplifies the task
of keeping track of bundle versions and their deployment properties. In the
Bundles tab, the contents of the vault on the server to which you are currently
connected are displayed:

For more information about working with bundles and their contents, please
refer to Chapter 4, Adding Bundles and Defining Bundle Content.
32 � Chapter 2

Administration Tool Date and Time Entry Formats
When configuring bundle properties, as well as some server and cluster
properties, you will encounter property fields that accept time values. There are
many formats that are accepted and correctly interpreted by DeployDirector.
The following lists outline these formats.

Abbreviation Value Example

MMM month OCT

MM month 10

dd day 28

yyyy year 1973

hh hours 11

mm minutes 59

ss seconds 45

z time zone EST

a a.m./p.m. marker pm

Date and Time Formats

yyyy.MM.dd hh:mm:ss z yyyy.MM.dd hh:mm:ss

yyyy.MM.dd hh:mm z yyyy.MM.dd hh:mm

yyyy.MM.dd h:mm:ss a z yyyy.MM.dd h:mm:ss a

yyyy.MM.dd h:mm a z yyyy.MM.dd h:mm a

yyyy/MM/dd hh:mm:ss z yyyy/MM/dd hh:mm:ss

yyyy/MM/dd hh:mm z yyyy/MM/dd hh:mm

yyyy/MM/dd h:mm:ss a z yyyy/MM/dd h:mm:ss a

yyyy/MM/dd h:mm a z yyyy/MM/dd h:mm a

MM/dd/yyyy hh:mm:ss z MM/dd/yyyy hh:mm:ss

MM/dd/yyyy hh:mm z MM/dd/yyyy hh:mm

MM/dd/yyyy h:mm:ss a z MM/dd/yyyy h:mm:ss a

MM/dd/yyyy h:mm a z MM/dd/yyyy h:mm a
Introduction � 33

Explicitly stated time intervals can also be entered in some property fields.
They can be specified as:

value [units]

Acceptable units include seconds, minutes, hours and days. If no units are
specified, milliseconds are used.

Explicitly stated times are also acceptable:

now: the current time
today: midnight of the current day
tomorrow: the current time, with the next day’s date.

Defining Server-Based JREs
When deploying application bundles, there is no guarantee that the end user’s
client machine will be equipped with the Java Runtime Environment the
application requires. By default, if the client machine does not have the correct
JRE it is downloaded from the deployment server.

As such, all JREs used by your bundles must be located on the server side (in
the vault). In the Administration Tool’s Platform tab, the hierarchical list of all
JREs on your servers that are available to be deployed to clients is listed.

It is here that you define the structure of platforms, JRE versions, and locations
of those JREs. This list is used when you set the Java property in a bundle,
which, if it does not exist on the client machine, will go down this list to find out
where on the server it can find the proper JRE.

Date Formats

MMM dd, yyyy yyyy/MMM/dd

yyyy.MM.dd yyyy/MM/dd

MM/dd/yyyy
34 � Chapter 2

Viewing Deployment Logs

During deployment activity, logs are automatically generated and recorded
either as flat files on the deployment servers or in a central database. The
Administration Tool contains a reporting tool (accessed by clicking the
Reporting tab) in which each of the four logs can be viewed.

For conceptual information about log types, as well as procedural information
on configuring your deployment network’s logging behavior, please refer to
Chapter 10, Viewing and Managing Logs.
Introduction � 35

The Remote Administrator
While the Administration Tool serves primarily as a bundle configuration tool,
the Remote Administrator provides you with higher level control over your
deployment network, particularly server and cluster configuration and
management. When a stand-alone deployment server is running, entering
http://[your host name]:8080/servlet/admin/index.jsp in a browser calls
the Remote Administrator:

This page provides information on the following areas:

� information about your cluster, including host and public server names

� information about the server to which you are connected

� the bundles available on the server

� bundle management on the server to which you are connected

� access to server and client logs

� your organization’s DeployDirector license

� deployment statistics and status for the server

� the server’s cluster profile

� information on the build that created the server.
36 � Chapter 2

Additionally, actions that can be performed from this page include:

� changing of administrator passwords

� restarting the server

� entering new license information.

Introduction to the CAM
The CAM is the DeployDirector component whose function is managing
bundles on the client side (its counterpart, the SAM, is discussed in Chapter 3,
Managing Servers and Clusters). If the bundle is a Java application, the CAM
oversees its installation, execution and with newer bundle versions, its
updating. If the bundle is not an application, but a collection of support files,
the CAM still oversees its installation and updating. With this in mind, a CAM
must exist on every client machine, and is always sent along with a deployed
bundle if it does not yet exist on the client side.

CAM Roles
Establishing contact with the server When a client-side user requests a bundle,
or the bundle they are using requires a connection to the SAM, the CAM
attempts to make contact with a SAM. The CAM searches for available servers
across the network through the configured port (the default HTTP port is 80,
and the standard DeployDirector port is 8080). Upon finding one, a connection
is established with it.

Establish the validity of the user Once contact has been made with a server, the
SAM requires that the user’s validity (at least their validity as a bundle user) is
established through the CAM. This prevents unauthorized users from accessing
bundles, and allows authorized users to do so from different client machines.
The two steps that constitute this process are authentication and authorization.
(This is discussed in greater detail in Chapter 6, Configuring Bundle Runtime
Properties.)

Administrate bundle installations When a user’s bundle request has been
accepted, the CAM handles all file transfers between server and client. Once
the install applet has downloaded the CAM and the JRE with which it runs, it
begins to visually walk users through the installation. At this point, it is the
CAM that alters and writes to the client file system. As such, the CAM oversees
bundle downloads, installations, as well as bundle removal. (You can learn
more about the installation process and components in Chapter 5, Configuring
Bundle Installation Properties.)
Introduction � 37

Detect and act on a bundle’s properties during installation Bundle properties,
which are permanently set before the bundle is uploaded to a server, can vary
greatly between bundles and bundle versions. Generally, bundle properties
determine what the bundle contains, and how they and the entire bundle are
handled during and after deployment. The CAM ensures that all of these are
followed through at the client side.

Specifically, the CAM is responsible for detecting and installing:

� platform-specific files within a bundle (e.g. Windows .dll files, Start Menu
icons)

� platform-specific settings required for the bundle to run successfully (e.g.
Windows registry entries)

� execution files for specific platforms (namely, .exe and .sh files), which are
created by the CAM during deployment, and whose creation is originally
indicated by the bundle’s Entry Points property.

Manage bundle updating on the client side When multiple versions of a bundle
exist, the CAM is in charge of determining when users must upgrade to the next
version. It determines this by reading the properties of both the bundle
currently in use and those of a newer version detected on the server. Update
policies within an organization and for particular bundles can vary, and the
CAM ensures that actions determined by properties you set are faithfully
carried out. (More information on bundle updates can be found in Chapter 7,
Configuring Bundle Update Policies.)
38 � Chapter 2

Technical Support
Quest Software Inc. provides two support options for DeployDirector
customers: Pre-Sales Technical Support, and Gold Support with Subscription.
for more information about these please visit:

http://java.quest.com/support/deploydirector/.

Contacting DeployDirector Support
Any request for support must include your DeployDirector product serial
number. Supplying the following information will help us serve you better:

DeployDirector:
� serial number

� DeployDirector version number (displayed at the bottom of the Remote
Administrator pages)

CAM (Client-side Application Manager) information:
� the ddcam.config file, found in the <vendorname>/lib/ directory

� the bundle.properties file for the bundle in question, found in the
<vendorname>/<bundlename> directory

� the bundle.properties file for the CAM, found in the
<vendorname>/lib/ directory

� Web browser vendor and version being used

� Web browser JRE and version being used

� an archive of the client install directory in Zip format (not required, but
recommended)

SAM (Server-side Application Manager) information:
� the version.xml file, found in the <installdirectory>/deploydirector/

vault/<bundlename>/<bundleversion> directory

� the platform.xml file, found in the
<installdirectory>/deploydirector directory

� cluster.properties, found in the
<installdirectory>/deploydirector directory

� server.properties, found in the
<installdirectory>/deploydirector directory

� cached DeployDirector files, found in <installdirectory>/
deploydirector/dd/cache

� cleaned log files, found in <installdirectory>/deploydirector/logs
Introduction � 39

http://java.quest.com/support/deploydirector/

Third party information
� all log files from any third party components, including the Web server,

application server, proxy, firewall, and browsers (optional, but
recommended)

� a complete description of your Deployment environment, including 3rd
party components (e.g. firewall, proxy, or load balancer), as well as vendor
and version details for your client and server-side OS and JRE

To ensure prompt assistance, please fill out a DeployDirector Technical Support
Form at http://java.quest.com/support/supportwatch/.

Contact information

A Note About Our Transition
Sitraka Inc. is currently in the process of merging some of its technical
infrastructure with Quest Software, Inc. During this transition stage, all of the
aforementioned contact information should work. However, if you encounter
any problems, please visit http://java.quest.com for updated information.

Quest Software Web
Site (Java Products)

http://java.quest.com

DeployDirector Site http://java.quest.com/deploydirector/

North American
Support Information:

dd_support@sitraka.com
800-663-4723 (toll free in North America) or
416-594-1026
Monday to Friday, 9:00 a.m. to 8:00 p.m. EST
Fax: 416-594-1919

European Support
Information:

Email: eurosupport@sitraka.com
Phone: +31(0)20 510 67 00
Monday to Friday 9:00 a.m. to 5:00 p.m. CET
Fax: +31 (0)20 470 03 26
40 � Chapter 2

http://java.quest.com
mailto:dd_support@sitraka.com
mailto:eurosupport@sitraka.com
http://java.quest.com
http://java.quest.com/deploydirector/
http://java.quest.com/support/supportwatch/
http://java.quest.com/support/supportwatch/

 Chapter 3
Managing Servers and Clusters

hile later chapters in this guide cover aspects of the deployment
cycle outlined in the previous introductory chapter, proper
management of your server-side setup is discussed here.

Understanding and maintaining your server side components ensure proper
deployment and replication. The core server-side component is the SAM
(Server-side Application Manager), whose function is managing the
deployment and storage of bundles. The SAM’s actions are mainly dependent
on server-side and client-side actions that are initiated by system administrators
and end users. These actions include: client-side deployment requests,
administrator-initiated vault changes, and the logging of deployment network
activity.

SAM Roles and Responsibilities
Stores bundles and JREs The vault is the server-side entity that hierarchically
stores bundle versions and JREs for deployment to client-side end users. It is
the SAM that maintains this area and modifies it in response to system
administrator actions using the Remote Administrator and Administration Tool.

Replicates vault changes and logs to other SAMs/servers If your organization
uses a cluster of servers for deployment, the SAM ensures that vault changes
made on one server are reflected in all other servers. Additionally, deployment
logs are also transferred across the cluster in real time.

Validates and maintains secure data Within an organization’s network, bundle
deployment, as well as vault and log replication, can involve a great deal of
communication between servers and from server to client. The SAM ensures
that transferred data is both valid and secure. This functionality can
alternatively be delegated to your application server environment.

W

41

Moderates end user access to vault-based bundles It is likely that all of your
organization’s end users are not meant to have access to the contents of your
vaults. Additionally, it is possible that different groups of users may have
different access privileges to different bundles and bundle versions. As such, the
SAM oversees the authentication and authorization process of these end users,
during which it works closely with the CAM on the client side.

Generates differences between bundle versions When a new version of a bundle
is created for deployment, it is possible that only a few changes have been made
to a large application. To save time and bandwidth, the SAM, when processing
a request for the deployment of a new bundle version, does not deploy the
bundle in its entirety; instead, it generates a temporary build file that is based
on the differences between the user’s current version and the new version.

Delivers bundles to clients The SAM transfers bundles in response to CAM
requests. Bundles are received and managed by the CAM on the client side.

Logs all deployment and server activity Managing a large deployment network
requires constant monitoring for server-side and client-side actions and
problems. This can be an unnecessarily tedious task for system administrators.
The SAM automatically generates logs that thoroughly, yet succinctly, report
activity across the deployment network in a variety of formats. These logs can
be easily viewed in the Administration Tool.

Server-Side Processes
The two main server-side processes can be defined by where user action occurs.
On the client side, end-user bundle requests that are sent to the SAM initiate
the deployment process. Meanwhile, on the server side, system administrators
who make and update bundles initiate the server-side replication process.

The Deployment Process from the SAM’s Perspective
Deployment always begins on the client side, when end users connect to a
deployment server. Once a connection has been made, whether the user
explicitly requests a bundle or their current bundle is configured to require
them to download a newer available version, this process involves these steps:

1. Authenticated user information, along with a bundle version request, is sent
to and received by the SAM from the CAM.

2. The SAM ensures the authenticated user is authorized to download the
bundle version they are requesting.

3. If the user is authorized to access the bundle or bundle version, the SAM
initiates the deployment of that bundle. The installer applet installs the
CAM, then the CAM is instructed to carry out the installation process. If
42 � Chapter 3

the application is detected on the client side, then the launcher applet is
executed instead.

4. For the major events that occur on both the client and server sides, log
entries are generated by the server. If a local logging configuration is being
used, the log entry is kept until the next scheduled aggregation period. If a
cluster logging configuration is being used, a JDBC connection is opened,
and the log entry is added to the central database.

In addition to being added to logs, if any client or server-side errors
occur during the deployment process, error information, in the form of
email reports, are immediately sent to the appropriate people found on
DeployDirector’s recipient list. (For more information about logging
and error email reports, please refer to Chapter 10, Viewing and
Managing Logs.)

The Server-Side Management Process
Server-side management consists of any bundle changes made to vaults, as well
as cluster or server property changes. These changes are made by system
administrators using the Remote Administrator. When an administrator
connects to a server with this tool, the following steps occur:

1. The system administrator makes changes to either the vault contents (i.e.
bundles), or the cluster or server properties. This could mean adding or
removing a bundle, or changing a deployment property at the cluster or
server level.

2. The server to which the Remote Administrator is connected is updated with
the changes.

3. Any changes to the vault or cluster level properties are replicated
throughout the cluster. This ensures consistency in the cluster’s deployment
behavior and bundle content.

During any inter-server communication, the security of transmission is
dependent on the SSL encryption classes being used with
DeployDirector. (For more information about security, please refer to
relevant sections in Chapter 6, Configuring Bundle Runtime
Properties.)

4. For the major events that occur during this process, log entries are
generated by the server. If a local logging configuration is being used, the
log entry is kept until the next scheduled aggregation period. If a cluster
logging configuration is being used, a JDBC connection is opened and the
log entry is added to the central database.

In addition to being added to logs, if any client or server-side errors
occur during the deployment process, error information, in the form of
Managing Servers and Clusters � 43

email reports, are immediately sent to the appropriate people found in
DeployDirector’s recipient list. (For more information about logging
and error email reports, please refer to Chapter 10, Viewing and
Managing Logs.)

Bundle and Log Replication
As briefly mentioned in the previous section, any changes to the vault or
cluster-level properties are replicated throughout the cluster. This ensures
consistency in the cluster’s deployment behavior and bundle content.

When an administrator connects to a server using the Remote Administrator,
they can perform these types of changes. However, since at any point in time
client-side end users can connect to any of the servers in the cluster, it is very
important that all servers carry the same bundle versions. Otherwise, chaos
may ensue as client-side users try to access bundles that exist on some servers
and not on others, or are configured differently on different servers.

As an example of the latter problem, such a predicament can arise if two
administrators simultaneously create a new version of the same bundle on
different servers. Avoiding an odd situation like this requires good
communication among all system administrators. However, DeployDirector’s
automatic replication helps avoid similar problems.

The Rules of Engagement
While bundle and log replication is automatically performed by SAMs, there
are a few things a system administrator can do to ensure consistency across the
cluster.

1. There is nothing wrong with fear of commitment. Continually committing
(then changing), unfinished bundles to servers increases the chance of end
users unknowingly downloading an incorrectly configured bundle. Until
the bundle is ready to be used by client-side users, make sure you save
bundles-in-progress locally on your workstation (by clicking File > Save).

2. When you are ready to commit, let it be known to everyone. Whenever
you have finished making changes, make sure they have been committed to
the server to which you are connected (by clicking File > Update Server).
Once performed, vault and cluster property changes will automatically be
replicated to all other servers.
44 � Chapter 3

3. Name your creations wisely. Considering the potential number of client-
side users, it is best to give each bundle exclusive and scalable names. This
makes long term bundle management easier, and helps avoid the possibility
of client-side users downloading different bundles with the same name or
version number. As a suggestion, use bundle names that make sense to both
system administrators (for archiving and identification) as well as client-side
users (for usability).

Another bundle naming issue that you should be aware involves the use
of spaces. While acceptable, spaces in bundle names are handled
differently by Netscape browsers, where they should be represented by
the %20 string. When instructing client-side users to manually enter
URLs to access such a bundle, or when entering the hypertext
reference on an HTML-based front end, be sure to substitute all spaces
with this string. For example:

http://[your_host_name]:8080/servlet/deploy/bundle name

should be entered as:

http://[your_host_name]:8080/servlet/deploy/bundle%20name

JRE Management
When bundles are deployed, the specific JRE required to run the application it
contains can also be deployed. This occurs when the bundle’s Search for
Installed JREs option is enabled and the appropriate JRE is not found on the
client side, or when the JRE search option is disabled. (Please see Checking for
JREs on the Client Side for more information about using this bundle property.)

The hierarchical list simplifies the cataloging of JREs, as they are categorized by
platform, creator, and version.
Managing Servers and Clusters � 45

Adding a new JRE to the vault

1. Ensure the JRE and all of its support files (i.e. the JRE’s install directory)
have been archived in Zip format.

It is important to avoid using the distributions provided by the JRE
creator (e.g. Sun, IBM), as DeployDirector cannot process them
properly.

2. In the Administration Tool, select the Platform tab.

3. Click File > Refresh to load the list of platforms and JREs currently located
on the server to which the Administrator Tool is connected.

4. If necessary, add a new platform under which the new JRE belongs by
selecting its parent in the tree and clicking Edit > Add Platform.

For example, Platform i386 is added under Platform Windows, and
Platform Windows is added under Platforms.

5. In the tree, select the platform to which the JRE belongs and click
Edit > Add JRE.

6. In the file chooser that appears, find and select the JRE Zip archive that you
created.

7. Selecting the JRE Zip archive displays a JRE properties dialog.

8. In the Vendor field, enter the name of the JRE’s creator (e.g. sun, ibm, hp).

9. In the Version field, enter a two-point JRE version number. The two-point
version number (e.g. 1.1.8) can be appended, if necessary (e.g. 1.3.0_02).

10. In the Filename field, enter the name of the executable JRE and its full path
relative to the root of the JRE Zip archive (e.g. if the selection is javaw.exe
in the bin directory, enter bin/javaw).

11. Select OK.

12. Select File > Update Server.

The JRE is now set up on the server, is reflected in the list in the
Administration Tool, and can be referenced during bundle JRE
configuration.
46 � Chapter 3

Servers and Server Clusters
In an organization with a large base of client machines, using multiple
deployment servers alleviates the strain created during heavy client-side
download periods (e.g. when all users are downloading a new update within a
small time frame). This is accomplished by defining a cluster of servers which
are used with a load balancer to evenly distribute requests to SAMs. This type
of configuration also ensures that deployment requests can reach a server, even
if other servers in the cluster are down.

Outside of actual deployment, clusters also facilitate management of the
deployment network. It is important that the list of available bundles is identical
to a client-side end user, no matter with which server they have established a
connection. As such, SAMs ensure that bundle replication occurs across a
cluster whenever any vault changes are made to any one server. (For more
control over the sharing of bundles, it is recommended that you set up and use
Transfer Groups instead.)

Replication also affects the consistent distribution of activity logs and email
error reports. For replication, logging and error reports, it is important that each
server in a cluster is aware of the presence and identification of all other servers.
This is established through each server’s cluster.properties file.
Managing Servers and Clusters � 47

Server-to-Server Messages within a Cluster
Internally, servers that are part of a cluster communicate to each other. Certain
cues initiate this process. For example, when a system administrator updates a
particular server with a new bundle version, the server to which they are
connected informs the other servers that a new bundle exists. The other servers
then indicate that they are ready to receive the new bundle. In general, servers
communicate with each other to inform other servers that:

� a new JRE exists

� a new bundle exists

� a new bundle version exists

� a server configuration has been modified

� new log entries have been created

� a new client-side bundle installer has been created.

Since these processes are built into DeployDirector, they constitute the tight
inter-server communication network that ensures your deployment cluster
possesses collective traits that make it easier to manage.

Cluster and Server Properties
Each server possesses a pair of profiles that outline how the server and server’s
cluster handle deployment, logging and replication. The cluster.properties
and server.properties files define, respectively, how the cluster behaves, and
how the server behaves within the cluster. Each server’s cluster.properties
file is identical, while its server.properties file can be unique (although this is
not always the case).

A server’s properties, and the properties of the cluster to which it belongs, are
both viewed and edited in the Remote Administrator:
48 � Chapter 3

Configuring properties from the Server: Cluster Configuration page in the
Remote Administrator affects (at the cluster level) error email processing,
logging, and cluster access from the client side.

Although the cluster.properties file can be manually edited, it is necessary
for you to make cluster property changes with the Remote Administrator. This
ensures that changes are replicated across the cluster (which will not happen if
you manually change them).

Configuring properties from the Server: Server Configuration page in the
Remote Administrator affects, at the server level, error email processing,
logging, server access from the client-side and security.
Managing Servers and Clusters � 49

Setting Basic Cluster Properties
Whether or not you set server level properties, you must always define your
cluster. Basic cluster configuration tasks include: setting up the cluster, adding
servers to the cluster, removing a server from a cluster, and changing a cluster
server’s properties.

Viewing your server cluster

1. In the Remote Administrator Tool, navigate to the Server: Cluster
Configuration: Cluster Hosts page.

All the servers you have defined in your cluster are listed here:

It is important to ensure that all deployment servers are listed as hosts
here. Otherwise, missing servers will not be part of the replication pool.

2. Select any server from the list and click Edit Host to view its profile.

The servers listed as part of this cluster deploy bundles and are part of the
replication pool. This list also determines which servers generate and receive
logs, and send email error reports. From this page, you can also edit the cluster
properties to determine which of these servers are visible from client machines.
How all of these functions are carried out depends on whether they have also
been defined at the server level. These issues are covered later in this chapter.
50 � Chapter 3

Adding a server to a cluster

1. In the Remote Administrator Tool, navigate to the Server: Cluster
Configuration: Cluster Hosts page.

2. Click Add Host.

The Server: Cluster Configuration: Hosts: Add page appears, requiring
input for several host properties.

3. In the Host Name text field, enter the name by which the server will be
known within the cluster. (Please note that this name is not necessarily seen
by client-side users.)

4. In the Access Protocol text field, enter the protocol used to access the new
server (the default value is http).

5. In the Access Port text field, enter the port through which the server is
accessed (the default is 8080).

6. In the Root Page text field, enter the path through which the server’s
bundles can be accessed from the client side (the default is /servlet/
deploy).

The values entered as the machine and page properties constitute the
base URL at which the server’s bundles are accessed.

For example, if you entered installserver in the Host Name field, and
http, 8080, and /servlet/deploy in the remaining fields, then the
server’s access URL is http://installserver:8080/servlet/deploy.

7. Review your settings, then click Save.
Managing Servers and Clusters � 51

Removing a server from a cluster

1. In the Remote Administrator Tool, navigate to the Server: Cluster
Configuration: Cluster Hosts page.

2. From the server list, select the server you want to remove.

3. Click Remove Host, and confirm the action.

This change is replicated from the server to which you are connected, to
all other servers in the cluster. The removed server is no longer part of
the replication pool.

Changing a server’s host properties

1. In the Remote Administrator, navigate to the Server: Cluster Configuration:
Cluster Hosts page.

2. From the server list, select the server whose properties you want to change.

3. Click Edit Host to reveal the server’s properties.
52 � Chapter 3

4. Change the server’s host properties as required.

The listed property text fields constitute the server’s access URL for the
user.

In the above example, since the Host Name is host3, the server’s access
URL is http://host3:8080/servlet/deploy.

The /servlet/deploy path is the directory on the machine in which
vault-based bundles are accessed.

Port and protocol determine how you can access the server on the
network.

5. Review your settings, then click Save.

The Combined Effect of Server and Cluster Properties
The configuration of some cluster and server properties are exclusive to that
network level. For example, setting the administrator’s user name and password
is done at the cluster level, and affects only the cluster. Conversely, setting
which security class is used is done at the server level and effects only
individual servers. However, most properties can be set at both the cluster and
server level and have different effects when both sets of properties are
combined.

It is important to be aware of the effect of combining cluster and server
properties when configuring your deployment network since logging, error
email processing, and the definition of visible servers to the client side are all
directly affected.

Bundle properties that affect the logging of deployment activity, when set at the
server level, override those set at the cluster level for that particular server. On
the other hand, properties that affect the sending of email error reports
(conceptually, a subset of logging), when set at the server level, are aggregated
with those at the cluster level. (You can find more information about the effects
of combining cluster and server properties for logging and error email reporting
in Chapter 10, Viewing and Managing Logs.)
Managing Servers and Clusters � 53

Combining cluster and server properties also affects which servers in the cluster
are visible to client machines:

The Client-Side Visibility of Servers in a Cluster
On the client side, end users connect to deployment servers to request,
download, and install bundles. Whether this is done directly by the user (by
entering a URL into their browser) or through an HTML front end created by
your organization (which often displays the name of the server being accessed),
by default, all servers in a cluster are visible to the end user.

However, there may be cases when you do not want end users knowing about
all existing deployment servers. You can easily define, at the cluster level, which
servers are meant to be ‘seen’ by end users. This is done by defining public
servers on the Server: Cluster Configuration: Server Names page in the Remote
Administrator.
54 � Chapter 3

The following example demonstrates how defining public server names in the
Remote Administrator can simplify deployment by designating a load balancer
as the only visible access gateway to the deployment servers.

The defined cluster consists of
three servers (i.e. hosts). All
servers share logs and replicate
bundles to each other.

Since no cluster server name has
been set, all three servers are
visible, and directly accessible
by end users on the client side.

The defined cluster still consists of
the original three servers. This is
important, since logs and bundle
changes must be shared
between them.

At the cluster level, a server name
has been assigned, defining the
load balancer name and location
as the only client-side gateway to
server-based bundles.

load balancer public server = UserSeesMe

cluster host = Host0 cluster host = Host1 cluster host = Host2

cluster host = Host0 cluster host = Host1 cluster host = Host2

Cluster Configuration:
Cluster Hosts

Cluster Configuration:
Cluster Hosts

Cluster Configuration:
Server Names

The Cluster as End User Access Gateways

Specifying End User Access Gateways

On the client side, end users
are aware of, and use the name
and location of the load balancer
to access server-based bundles.
Managing Servers and Clusters � 55

Defining public servers at the cluster level to accommodate a load balancer is
the most common application of these settings. However, other situations may
warrant similar steps. The following example also demonstrates how defining
public servers overrides the cluster-level host settings. In this example, an
additional server is temporarily added to the deployment network, and while
logging and bundle replication are meant to be shared between all servers,
system administrators do not want end users to notice the presence of the
additional server.

The defined cluster consists of
two servers. These servers share
logs and replicate bundles to each
other.

Since no server host properties
have been set, both servers are
visible to, and directly accessible
by end users on the client side.

A new, mandatory bundle version
is available for download by end
users. The cluster now consists of
the original two servers, plus an
additional server (host2) to
handle increased network activity
from user download requests. All
three servers share logs and
bundle changes.

The temporary server will be
removed from the cluster once the
download frenzy has subsided.
Because of this, the cluster's
server names have been defined
so that only the two original hosts
are visible to, and accessible by
end users.

cluster host = host0 cluster host = host1

Cluster Configuration:
Cluster Hosts

Cluster Configuration:
Cluster Hosts

Business as Usual: the Cluster as End User Access Gateways

Temporarily Using an Extra Server for Increased Network Activity:
Specifying End User Access Gateways

On the client side, end users
notice no difference in the names
and locations of deployment
servers.

public server = UCme1 public server = UCme2

cluster host = host0 cluster host = host1 cluster host = host2

Cluster Configuration:
Server Names
56 � Chapter 3

Defining server names at the cluster level

1. Ensure that your cluster of servers has been properly defined.

Regardless of which servers are accessible by client-side end users, all
servers that are meant to share logs and bundle changes must be part of
the cluster.

2. In the Remote Administrator, navigate to the Server: Cluster Configuration:
Server Names page.

3. Click Add Server to begin entering the new server details.

4. In the Host Name text field, enter the name by which the server will be
known to client-side users. (Please note that this name may be different
from its cluster host name.)

5. In the Access Protocol text field, enter the protocol used to access the new
server (the default value is http).

6. In the Access Port text field, enter the port through which the server is
accessed (the default is 8080).

7. In the Root Page text field, enter the path through which the server’s
bundles can be accessed from the client side (the default is /servlet/
deploy).

The values entered as the machine and page properties constitute the
base URL at which the server’s bundles are accessed.

For example, if you entered installserver in the Host Name field, and
http, 8080, and /servlet/deploy in the remaining fields, then the
server’s access URL is http://installserver:8080/servlet/deploy.
Managing Servers and Clusters � 57

8. Review your settings, then click Save.

Transfer Groups
While the automatic replication of bundles within a cluster can ensure
identically stocked server vaults, it is sometimes necessary to move bundles
between clusters (e.g. from testing to deployment) or to upload bundles to
multiple clusters (e.g. your network is geographically compartmentalized). You
can use the Administration Tool to send bundles to established transfer groups.
Setting up and using transfer groups allows you to:

� view the vault contents (i.e. bundles) of different servers to confirm that
their vault contents are the same

� manually transfer new bundles to servers that are not part of a cluster

� move (copy) bundles between clusters (e.g. from a development cluster to a
production cluster).

Listing Servers in the Administration Tool
The Administration Tool contains its own list of servers to which you can
connect and transfer bundles. These servers can be both test servers and
production servers, thus do not have to be a part of any cluster. You can view
the list of servers known to the Administration Tool by clicking the Servers tab.
58 � Chapter 3

The same list of servers is found in the server combo box on the main tool bar.
The selected server is the one to which the Administration Tool is currently
connected, thus selecting another from the list results in an automatic
connection attempt. (You will be prompted for proper authentication
information.)

The removal of a server from the list is a matter of selecting one from the server
list and clicking Remove. Adding a server requires that you enter its full access
path.

Adding a new server to the servers list

1. Select the Servers tab in the Administration Tool to view the current list of
known servers.

2. In the Servers text field, enter an access path for the server you wish to add
to the list.

The server path must include protocol, server name, port number, and
servlet path information (e.g. http://your.server.com:8080/servlet/
deploy).

3. Click Add.

The new server appears in the list.

4. Test the new server’s access information by selecting it from the server
combo box in the main tool bar.

A successful connection attempt means the inputted server information
is correct. If the connection attempt fails, check to see that it is currently
running, and verify that the access path is correct.
Managing Servers and Clusters � 59

Using the Servers List to Compile Transfer Groups
Once various deployment servers are set up in the Administration Tool, you
can create transfer groups. A transfer group can be comprised of test servers or
production servers, allowing bundle uploads to servers during a testing phase,
and quick rollout to actual production servers. Typically, an administrator will
connect to a test server on which new bundles have been created with the
Administration Tool, then send out the new bundle to a transfer group.

It is also possible to create transfer groups that are comprised of servers that
make up a cluster. In the following example, a transfer group has been defined
to include all the servers found in two clusters, allowing fast server updates
across a geographically large deployment network.

Defining and Using a Transfer Group

cluster host = Host0 cluster host = Host1

Continent A Very Large Ocean Continent B

��
��
��

yy
yy
yy

cluster host = Host0 cluster host = Host1

Transfer Group Includes All Servers

Cluster Configuration: Cluster Hosts

Since cluster replication only ensures
the sharing of bundle updates within
the cluster, a transfer group that
includes all the servers is set up.

The presence of the transfer group
has no effect on the end user
experience. However, administrators
can deploy a new bundle to all
servers in both continents in one
step.

One cluster exists on each continent.
On Continent A, a cluster has been
defined to include two servers named
Host0 and Host1. A similar cluster
has been set up on Continent B.
Each cluster is maintained separately,
and logs and bundles are replicated
within each individual cluster.

The organization's client machine
network spans two continents.
While two clusters have been set
up on each respective continent
to use resources more efficiently,
the content on every deployment
server is meant to be identical.

Defining a cluster is accomplished
by creating cluster host profiles for
each server on the Remote
Administrator's Server: Cluster
Configuration: Cluster Hosts page.

Cluster Configuration: Cluster Hosts
60 � Chapter 3

Creating a transfer group

1. Ensure that all servers meant to be part of the transfer group have been
added to the Administration Tool’s servers list

2. In the Administration Tool, click the Transfer Groups tab.

Here you will be able to name a transfer group and add servers from
the known servers list.

3. In the Group text field, enter the name for the transfer group.

The transfer group is added to the group list, and is automatically
selected.

4. From the Servers list, select the servers that are meant to be part of the
transfer group.

5. Click the < key to make the selected servers part of the transfer group.

Your transfer group has been created. You can now transfer bundles to
all the servers in this group in one step.
Managing Servers and Clusters � 61

Uploading bundles from a server to a transfer group

1. Ensure that a transfer group has been set up.

2. In the Administration Tool, click the Transfer tab.

All bundles found on the server to which you are connected are
displayed in the Bundles list. Each bundle’s existing version names (i.e.
versions that exist on this particular server) are listed beneath their
respective parent bundle.

All transfer groups, as well as all servers known to the Administration
Tool are found in the Groups and Servers list.

3. In the Groups and Servers list, select the transfer groups and any other
servers to which you want to transfer bundles.

If an individually selected server is also found in a selected transfer
group, bundles will only be transferred to that server once.

4. In the Bundles list, select the bundles or bundle versions that are going to
be transferred to the selected transfer groups and servers.

Selecting a bundle name selects its most recent version for transfer, and
selecting multiple versions of the same bundle retains the version order
when transferred to the destination server.

If the bundle on the destination servers already exist, transferred
bundles become the most recent versions on the destination server.

5. Click Transfer to upload the selected bundles to the transfer groups and
servers.
62 � Chapter 3

The Automatic Creation of Bundle Updates
When an end user requests a new bundle version, the SAM does not send that
entire bundle to them. Instead, the SAM performs JAR differencing to create a
smaller bundle version update, which is then sent to the client side for further
processing. This technique cuts down on bandwidth use across the network and
is particularly helpful when large groups of end users are simultaneously
requesting and downloading a new bundle version.

Understanding JAR Differencing
JAR differencing results in the creation of a temporary JAR. This update JAR
consists only of the differences between what is in the new server-side version,
and what already exists in the old client-side version. Once sent to the client
side, this server-side JAR is combined with a modified client JAR to form the
actual next version bundle.

To illustrate this process in action, consider these two JARs:

1. The JAR that constituted the first version of the bundle has been deployed
to, and currently exists on, a client machine. The second version of the
bundle, which currently resides on the deployment server, is being
requested by the client.

2. The contents of both JARs are compared on the server side. In this
example, the SAM determines that version 2 of the JAR no longer contains
B.class, has a new class (F.class), and also has two modified classes
(C.class and D.class).
Managing Servers and Clusters � 63

3. A list of differences is generated and sent to the client side, and is used by
the CAM to begin creating a temporary JAR. If necessary, unneeded JAR
contents from the current client-side version are removed, and a request is
made for any other required JAR contents that are missing.

4. On the server side, the JAR content difference list is used to create a server-
side temporary JAR that will be sent to the client side. This JAR contains
anything that the client-side JAR does not have.
64 � Chapter 3

5. The server-side temporary JAR is sent to the client side. The CAM rebuilds
the final version 2 JAR by combining the contents of the received server-
side JAR, and the modified client JAR.

Server Caching
The offsetting aspect of building bundle updates on the fly is the server-side
resource overhead that may occur, depending on the hardware capabilities of
the deployment servers on which SAMs are found. The server-side cache,
which temporarily stores these updates (as ZIP files), alleviates heavy disk usage
during these times.

If the server-side cache is enabled, it is always checked first for the bundle
update an end user is requesting. By default, the maximum cache size is set to
30 million bytes (~28MB) and its contents are kept for 30 days. The contents of
the cache can be found at:

<installpath>/deploydirector/dd/cache.
Managing Servers and Clusters � 65

Setting server-side cache properties

1. In the Remote Administrator, navigate to the Server: Server Configuration:
Miscellaneous Properties page.

2. Enter a value in the deploy.server.cache.maxage field.

This value should be an explicitly stated time interval (e.g. 30 days).
This indicates for how long any cache items can sit before being
removed by the SAM. When a cache item is used, its counter is reset.

Please refer to the Administration Tool Date and Time Entry Formats
section in Chapter 2, Introduction for more information about valid
time and date formats that can be used with the Administration Tool.

3. Enter a byte value in the deploy.server.cache.size field.

4. Click Update Configuration to commit these changes to the server.

Since hardware capabilities vary from server to server, this property must be set
at the server level and must be individually set for all servers that are part of
your deployment network.

Running DeployDirector as a Windows Service
When you first installed DeployDirector, you installed and set up the
standalone server (you can revisit Configuring and Running the Standalone
Server in Chapter 1 to refresh your memory). This is the prepackaged server on
which DeployDirector can run, as an alternative to using it with a commercial
application server.

If you are using Windows 2000 or Windows NT, you can run the standalone
server as a Windows service. As a Windows service, DeployDirector can be run
transparently in the background without any user interface. It automatically
starts and stops when the machine is turned on and off, is not tied to any
specific administrator’s user ID and password, and remains active whether or
not anyone is logged in to the machine on which it runs.

To run DeployDirector as a service, locate the executable service.bat file in
the <ddinstalldirectory>/standalone/bin directory. At a command prompt,
use this command with the install, or uninstall parameter to set up, or
remove DeployDirector as a server. If you enter:

service install

you will be able to see it in your Windows Services Control Panel.

When running as a server, any error reporting or standard output will be
recorded to the stderr.log and stdout.log files, which are found in the
<ddinstalldirectory>/standalone/logs directory.
66 � Chapter 3

 Chapter 4
Adding Bundles and Defining Bundle
Content

he core of every bundle consists an application your organization has
developed. Before configuring a bundle’s deployment properties, you
first define its content. Whether the application is a straightforward

update for a single platform, or is a large application for use on different client
platforms, the Administration Tool assists in the assembling of application files
and directory structures into a server-bound bundle.

One of the more common tasks performed with the Administration Tool is
changing the contents of the vault (i.e. bundles and bundle versions). In the
Bundles tab, the contents of the vault on the server to which you are currently
connected are displayed:

T

67

Making Changes to the Vault
From the Bundles tab, you can add or remove bundles, as well as create new
bundle versions, either from scratch, or by basing it on an existing bundle
version. Bundles based on existing versions already contain files that you can
then modify. Otherwise, newly created bundles require that you define its
internal directory structure and accompanying files.

Adding and Removing Bundles

Important: When naming
bundle versions, be aware
of the authorization class
with which it works. Some
authorization classes
introduce constraints on
allowable version name
formats. Please refer to
Authorization Behavior and
Allowable Bundle Version
Names in Chapter 9, for
more information.

While the addition and removal of bundles to your deployment server is a
straightforward process, it is important that bundles and bundle versions are
logically named. Two conventions that come from this logic include the naming
of bundle versions in an incremental manner, as well as bundle and bundle
version names being unique, particularly when a bundle version rollback
occurs.

Adding new bundles to the vault

1. Click anywhere in the node list to bring focus to it.

2. Click Edit > New Bundle.

The New Bundle dialog appears, prompting you for the new bundle’s
name.

3. Enter a name for the bundle.

The New Bundle Version dialog appears. When you create a new
bundle, you are also required to create an initial bundle version.

4. Enter a name for the initial version (i.e. a name or number).

The new bundle appears as a top-level entry in the node list as an
uncommitted bundle (indicated by the red marker), and the initial
version is displayed as a child node, also as uncommitted (indicated by
the yellow marker).

Some of the initial bundle version’s default properties are set, but you
will need to configure it for deployment by adding files and setting
deployment and installation properties.

5. Configure the bundle.

Information on adding files to bundles is discussed later in this
Administrator’s Guide chapter. Subsequent chapters provide
information about all other bundle properties that need to be
configured.
68 � Chapter 4

6. Click File > Update Server to commit your new bundle and initial version
to the server once it has been configured.

Adding new bundle versions

1. Select the bundle for which you want to add a new version.

2. Click Edit > New Version.

The New Version dialog appears.

3. Enter a name for the new version.

The new bundle version appears as an uncommitted child node
(indicated by its yellow marker).

Some of the initial bundle version’s default properties are set, but you
will need to configure it for deployment by adding files and setting
deployment and installation properties.

4. Configure the bundle version.

5. Click File > Update Server to commit your new bundle version to the
server.

Removing bundles

1. Select the bundle or bundle version you want to remove.

2. Click Edit > Remove.

If the bundle has not yet been uploaded to the server, it is immediately
removed from the list.

If the bundle was previously uploaded to the server, it is marked for
removal the next time you update the server with your changes.

3. Click File > Update Server to commit this change (i.e. remove the bundle
from the server).

Rolling back bundle versions

1. Select the bundle version you want to remove.

2. Click Edit > Remove.

3. Click File > Update Server to remove the bundle from the server.

4. Ensure the next bundle version you create to replace the rolled back
version is not identically named (e.g. if version 2.0 of a bundle is rolled
back, its replacement version could be named ‘2.1’ or ‘2.0a’).
Adding Bundles and Defining Bundle Content � 69

Basing New Bundles on Existing Bundles
It is not uncommon for an organization to periodically develop application
updates that need to be deployed to clients. When adding files to, and setting
properties for a new bundle version, it is not necessary to build it from scratch
every time. DeployDirector allows the creation of a new bundle version based
on the settings and contents of the previous version. The Administration Tool
offers two options for basing new bundles on existing bundles: copying bundle
versions from a deployment server, and copying bundle versions from a local
source drive.

Copying a bundle version that has already been uploaded to a server results in
a new bundle version that has inherited all the property settings and files of that
server-based bundle. Once created, you can then modify the bundle and
upload it to the server as a new version.

Copying a bundle version from a defined, local source allows administrators to
retrieve only the latest application changes directly from its source drive on the
network. Typically, when you are adding files to a newly created bundle, these
files are most likely coming from a work area on your local drive, or a
development drive on the network. If any of these source files have since been
modified, it is more desirable that a new bundle version automatically retrieves
these newer local files, rather than you having to manually do this. Use the
Administration Tool’s Copy Source Version option to accomplish this.

Copying bundle versions from the server

1. Select the committed bundle version that you want to copy.

2. Click Edit > Copy Server Version.

The Copy Server Version dialog appears.

3. Enter a name for the new version.

The copied bundle appears as an uncommitted child node in the
bundle list.

4. If necessary, configure the bundle version by modifying its properties and
adding or removing files that are to be deployed.

5. Click File > Update Server to commit your new bundle to the server.

Copying bundle versions from the local source

1. Select the server-based bundle version that you want to copy.

2. Click Edit > Copy Source Version.

The Copy Source Version dialog appears.

3. Enter a name for the new version.
70 � Chapter 4

The source files are copied to your bundle. The procedure works on the
assumption that all files still exist in the locations from which they were
originally retrieved.

The copied bundle appears as an uncommitted child node in the
bundle list.

4. If necessary, configure the bundle version by modifying its properties and
adding or removing files that are to be deployed.

5. Click File > Update Server to commit your new bundle to the server.

Adding Files and Directories to Bundles
Bundle contents begin as files found on a system administrator’s local drive or
on a network. When the files are ready to be deployed to end users, a new
bundle version is created (from scratch, or copied, as discussed in the previous
section), and the attributes associated with the bundle can be configured and re-
configured until it is uploaded and committed to the server.

You can add files to a bundle when a Platform node is selected in the
Administration Tool. Selecting a particular Platform node indicates that any
files included when that node is selected are meant to be deployed to clients
based on that particular platform. For example, files found and added while the
Platform All node is selected are meant to be deployed to all clients on any
platform, while files added when the Platform Unix node is selected will only
be deployed to Unix clients.
Adding Bundles and Defining Bundle Content � 71

Additionally, under each main platform node (i.e. Windows and Unix), specific
platform nodes can exist (see image below left). The list of available platforms
in a bundle’s list is dependent on which JREs are present on your deployment
server, which can be viewed in the Platform tab (below right).

When adding files to a new bundle, it is recommended that you add common
files under the All platform first, then add specific files meant for the supported
platforms by selecting the desired Platform node and adding files.

When adding files to a bundle, the file selection dialog that appears prompts
you to set the source directory. This is considered the root directory relative to
your local file system, on which the files that are added are based (and affects
the SOURCE tag in the bundle’s version.xml file). The right portion of the dialog
allows you to choose the files and folders you want to add to the bundle.
72 � Chapter 4

When selecting bundle contents, the selection of a folder includes all of its
contents (including nested folders). Avoiding a comprehensive inclusion of
folder contents can be done by manually selecting files within. The paths and
location of the files, relative to the source directory, are retained.

In addition to selecting and including entire directory-file structures, you can
also add individual folders. You cannot add files to these folders when creating
a bundle; their inclusion results in the creation of an empty folder on the client
side after installation. Add folders this way if you want your installed bundle to
create empty directories for future use (e.g. creating an empty documentation
folder with an application bundle acts as a placeholder for documentation files
that can be downloaded in a separate documentation bundle).

Adding individual directories to a bundle’s file structure

1. Select the bundle version’s appropriate Platform node.

2. Click Edit > Add Folder.

3. In the Add Folder dialog, enter the name of the folder you would like to
create.

Upon installation, this name will be appended to the bundle’s
installation path (i.e. [installdir]/[vendorname]/[bundlename]/
[addedfolder]).

The value entered should not contain drive letters or colons (e.g.
c:\temp).

4. Continue to add files and folders to the bundle under this or other
platforms.

5. Click File > Update Server to commit your new bundle to the server.

Adding cross-platform files

1. Select the bundle version’s Platform All node.

Once this node has been selected, you are able to add files and folders
to the bundle, as indicated by the Edit menu.

2. Click Edit > Add Files.

The Select Files dialog appears.

3. In the Source Directory field, enter or browse to the directory you would
like to set as the source.

4. Select the files.

5. Click Open.

The files you selected now appear under the bundle’s Platform All
node.
Adding Bundles and Defining Bundle Content � 73

6. If required, add any platform-specific (i.e. Windows or Unix) files to the
bundle.

7. Continue to configure the bundle version by modifying its properties and
adding or removing files that are to be deployed.

8. Click File > Update Server to commit your new bundle to the server.

Adding Windows files

1. Select the bundle version’s Platform Windows node, or the specific
Windows platform child node.

Once this node has been selected, you are able to add Windows files to
the bundle, as indicated by the Edit menu.

2. Click Edit > Add Files.

The Select Files dialog appears.

3. In the Source Directory field, enter or browse to the directory you would
like to set as the source.

4. Select the Windows files.

5. Click Open.

The files you selected now appear under the bundle’s Platform
Windows node.

6. If required, add any universal or Unix files to the bundle.

7. Continue to configure the bundle version by modifying its properties and
adding or removing files that are to be deployed.

8. Click File > Update Server to commit your new bundle to the server.

Adding Unix files

1. Select the bundle version’s Platform Unix node, or the specific Unix
platform child node.

Once this node has been selected, you are able to add Unix files to the
bundle, as indicated by the Edit menu.

2. Click Edit > Add Files.

The Select Files dialog appears.

3. In the Source Directory field, enter or browse to the directory you would
like to set as the source.

4. Select the Unix files.

5. Click Open.
74 � Chapter 4

The files you selected now appear under the bundle’s Platform Unix
node.

6. If required, add any universal or Windows files to the bundle.

7. Continue to configure the bundle version by modifying its properties and
adding or removing files that are to be deployed.

8. Click File > Update Server to commit your new bundle to the server.

Removing files

1. Expand the uncommitted bundle version’s Platform nodes to reveal the
files that it currently contains.

2. Select the files you want to remove.

3. Click Edit > Remove.

The selected files are removed from the list and this bundle version.

Continue to make changes to the bundle, then click File > Update
Server to commit these changes to the server.
Adding Bundles and Defining Bundle Content � 75

76 � Chapter 4

 Chapter 5
Configuring Bundle Installation
Properties

hen a bundle’s contents have been defined (as discussed in the
previous chapter), the next stage in its configuration is to set its
installation properties. While DeployDirector provides features

that allow the creation of bundle installation CDs, its greatest strength lies in the
deployment of bundles and updates over a network. Deploying bundles in this
manner means client-side users will install bundles with a DeployDirector
install applet in their Web browsers. As such, you need to configure all bundle
properties that relate to its installation on the client side.

The Deployment of Bundles Via Web Browsers
When client-side users request a bundle, this request is initially executed and
processed by the installer applet. This applet works in tandem with the CAM to
simplify application installation on client-side machines. The absence of direct
manual installation from the deployment process removes a mutual burden
from both system administrators and client-side end users. (There are cases
when a manual installation from a CD is warranted. Please refer to Preparing
Bundles for Manual CD Installations in Chapter 8 for more information.)

Introducing the Installer Applet
The installer applet is a core component between the client-side end user and
the SAMs. It shares duties with the CAM and is primarily responsible for
installing the CAM on the client machine. The installer applet is the first
component that client machines will execute during a bundle installation
request. Essentially, it:

� shows the license page if one exists

W

77

� performs the client authentication/authorization check

� installs the CAM if one does not exist on the client machine

� installs a JRE to run the CAM if required

� downloads and installs the JRE required by the bundle

� asks Windows users if they would like a desktop shortcut to the application
to be created (if this option has been enabled)

� runs the CAM and tells it which application to install (including the creation
of shortcuts and executable files)

� displays the readme if one exists

� calls the launcher applet to start the application if the bundle was requested
to be launched (please see The /launch Request later in this section for
more information).

Re-Signing the Installer and Launcher Applets
The installer applet runs in a browser, thus must be digitally signed in order to
have access to system resources on the client side. The applet must be granted
permissions to have network access, full file system access (read/write), system
property read/write access, and to execute sub-processes. A signed installer
applet is provided for you, however DeployDirector allows you to re-sign the
installer applet with your own certificate.

The tools and certificates for re-signing the applet differ depending on the
browser. The procedures outlined below have been tested with DeployDirector
on the Windows platform. For Netscape Communicator, you can use the
Netscape Signing Tool to sign the install.jar file located in the
<installpath>/deploydirector/installer directory. For Internet Explorer,
you will need the Microsoft SDK for Java which contains signcode.exe file
used to sign the install.cab located in the <installpath>/deploydirector/
installer directory.

Re-signing the installer applet for Netscape

1. Download the Netscape Signing Tool for your platform from Netscape’s
Developer site http://developer.netscape.com.

2. Set your PATH variable to include signtool.exe.

3. Obtain a certificate (https://certs.netscape.com/). The certificate should be
PKCS#12 (*.p12).

4. In Netscape Communicator, select the Security icon.
78 � Chapter 5

http://developer.netscape.com
https://certs.netscape.com/

5. In the dialog box shown below, select Yours under Certificates and click the
Import a Certificate button.

6. In the File Name to Import dialog, navigate to the certificate and click
Open.

7. In the Password Entry Dialog, enter your privacy protection password. This
password was created when you obtained the certificate.

8. Exit Netscape.

The Netscape cert7.db file, located in the Netscape/Users directory,
has now been updated.

9. Extract the install.jar from <installpath>/deploydirector/installer into
a local directory.

10. Run the DOS shell or any command line shell.

11. Navigate to the directory to which you have extracted the install.jar.

12. Enter the following command:
signtool -d”[directory containing the cert7.db file]” -
z”install.jar” -k”[certificate name]” -p”[certificate password]”
[directory to which you extracted the install.jar]

Make sure that each argument for the signtool is contained within
quotation marks, as shown above, if it has any spaces or other non-
alphanumeric characters.
Configuring Bundle Installation Properties � 79

Re-signing the installer applet for Internet Explorer

1. Download the Microsoft SDK for Java from http://www.microsoft.com/
java/download.htm#32.

The CAB file has to be signed at a low level, in order to allow it to run
in the “low” security zone on the client desktop. You may find it helpful
to consult the Developer FAQ at http://www.microsoft.com/java/
security/secfaq.htm.

2. Ensure that signcode.exe is in the PATH.

3. Obtain a certificate (https://certs.netscape.com/).

You should obtain mycert.spc and mykey.pvk files. For more
information, please consult http://www.thawte.com/certs/developer/
msauthenticode.html.

4. Run the DOS shell.

5. Enter the following command:

signcode -j “[directory path to javasign.dll]” -jp low -spc
“[directory path to mycert.spc]” -v “[directory path to
mykey.pvk]” [directory path to the install.cab]

Ensure that each directory path in this command contains the indicated
target file.

Launching Applications
DeployDirector applications can be launched by the end user by clicking on the
desktop shortcut, if one was created during bundle configuration in the
Administration Tool, or by using the /launch request in the Web browser.
Launching applications through a Web browser gives administrators an ability
to pass parameters to the application.

The /launch Request
The /launch request calls the launcher applet which automatically runs an
application that is already installed on the client machine (only Windows clients
are currently supported). If the application has not been installed when the
request is made, the launcher applet redirects to the installer applet.

The separate installer and launcher functionality ensure that only the required
streamlined applet is downloaded during a deployment session. If the
application is detected on the client side, then only the launcher applet is
downloaded, saving bandwidth and decreasing the download time.
80 � Chapter 5

http://www.microsoft.com/java/download.htm#32
http://www.microsoft.com/java/download.htm#32
http://www.microsoft.com/java/security/secfaq.htm
http://www.microsoft.com/java/security/secfaq.htm
https://certs.netscape.com/
http://www.thawte.com/certs/developer/msauthenticode.html
http://www.thawte.com/certs/developer/msauthenticode.html

Having end users run applications with the /launch request may be preferred if
your organization wishes to ensure that they are run identically by all users.
This may be necessitated by the presence of a large number of users, or the
existence of policies that require permission for new desktop shortcuts to be
created on client machines. In a case like this, bundles can be configured to not
install desktop shortcuts, and client-side end users can use a department or
organization-wide launch page (with hypertext links) to run applications using
the /launch request.

If you plan on running bundles with the /launch request, it is required that you
configure your bundles so that the User Queries Install Directory option is
disabled (please see Bundle Installation Directories: Creation Strategies), and
set the system property user.dir to $(INSTALLDIR) (please see Determining
how Bundles Affect Client Machine Settings for more information about system
properties). Using this Java system property ensures the current/target directory
is always the bundle’s install directory (i.e. [installdir]/[vendorname]/
[bundlename]). Since browsers that work with the launch applet, unlike desktop
shortcuts and startup scripts, have no hard-coded information about what the
bundle’s current directory information should be, they could be pointing off
into space. Ensuring focus by setting the user.dir system property rectifies this
problem.

Customizing the Install, Launch, and Error Pages
DeployDirector includes a standard HTML page in which the installer applet is
run. This page was first seen when the Administration Tool was deployed to a
system administrator’s workstation, and appears when a proper URL is entered
in a Web browser either manually or through a hypertext link.

DeployDirector provides you with an option of customizing the user interface
of the install and launch pages displayed on the client side. These pages are a
mixture of static and dynamic content. The static content for the install and
launch pages is read from the application.html file, located in the server’s
deploydirector/etc directory.

Before the page is loaded, it is scanned for place holders. These are special
comments in the HTML which are replaced with dynamic content as the page
is loaded. The application.html page can be globally edited for all
applications or for each version of a bundle. The only requirement is that the
tag
<!--PlaceHolder:APPLET--> is included somewhere in that HTML page. This
tag is replaced by the installer applet or the launcher applet, as required.
Configuring Bundle Installation Properties � 81

The following is a list of tags that can be included in your custom install/launch
HTML page. These tags can appear anywhere in the HTML page and there
can be multiple instances of any tag.

If no custom page is provided, then the application.html template found in
the deploydirector\etc directory is used and the tags in the HTML page are
replaced with the corresponding values.

Customizing the install and launch pages

1. Create a custom HTML page based on the application.html file found in
the deploydirector/etc directory. Make sure that it includes the
<!--PlaceHolder:APPLET--> tag.

2. Using the Administration Tool, configure the bundle and commit it to the
server.

Ensure that the bundle version is committed to the server before adding
the customized install/launch page.

3. Click on the Set Install/Launch Page button on the bundle_name/
bundle_version node.

Tag Replaced with:

<!--PlaceHolder:LAUNCHORINSTALL--> “install” or “launch”, as requested by the
end user

<!--PlaceHolder:APPLICATION--> The name of the application (read from
the bundle’s version.xml file).

<!--PlaceHolder:VERSION--> The version of the application (read from
the bundle’s version.xml file).

<!--PlaceHolder:URL--> URL entered by the user into the browser
to get to the install or launch page.

<!--PlaceHolder:LOGO-->
<!--PlaceHolder:LOGO_SS-->

Default Quest Software DeployDirector
logo or custom logo found in the
deploydirector\etc directory. The custom
logo should be saved with the same file
name.

<!--PlaceHolder:APPLET--> The installer applet or the launcher applet,
as required. This tag is REQUIRED.

<!--PlaceHolder:SERVLET NAME--> The name of the servlet read from the
server.properties file. If the property
deploy.server.name is not provided, the
default “DeploySAM” is used.
82 � Chapter 5

4. Navigate to the directory that contains your custom install/launch HTML
page and click Open.

Note that your custom HTML page does not need to reside in a specific
location. It also does not need to be called application.html, although
the Administration Tool renames it to application.html before
sending the page to the server. Your customized HTML page is added
to the following directory:
deploydirector/vault/<bundle_name>/<bundle_version>/dd/
application.html

The next time the end user will attempt to install or launch the
deployed application, the customized install launch page will be
displayed on the client side.

The Error Page
DeployDirector server notifies the end user of any errors by displaying an error
page. This page is composed of static and dynamic content. The static content is
read from the error.html file found in the server’s deploydirector/etc
directory. This page contains place holder HTML tags which are replaced with
the dynamic content as the page is loaded. You can customize the error page by
using DeployDirector’s custom HTML tags.

The following is a list of the custom HTML tags supported by the error page.
These tags can appear anywhere in the HTML page and there can be multiple
instances of any tag.

Tag Replaced with:

<!--PlaceHolder:SERVLET NAME--> The name of the servlet read from the
server.properties file. If the property
deploy.server.name is not provided, the default
“DeploySAM” is used.

<!--PlaceHolder:ERROR TEXT--> The error message displayed by the server.

<!--PlaceHolder:REQUEST--> The request from the user which generated the
error.

<!--PlaceHolder:URL--> Full URL to the page that caused the error.

<!--PlaceHolder:LOGO-->
<!--PlaceHolder:LOGO_SS-->

Default Quest Software DeployDirector logo or
custom logo found in the deploydirector\etc
directory. The custom logo should be saved
with the same file name (deploydirector.gif or
deploydirector_ss.gif).
Configuring Bundle Installation Properties � 83

Passing URL Parameters to an Application
Whenever a DeployDirector-administered application is launched through a
browser using the /launch request, additional parameters can be passed to that
application. This functionality offers more control over how applications are
run.

If the application already contains hard coded arguments, any additional
parameters passed through the URL will be appended. For example, suppose
that arguments a, b, and c, are hard coded in the bundle, and the end user
enters the following URL in the browser:

http://localhost/servlet/PureJava/launch?d&e&f=1

The application will receive arguments a, b, c, d, e, and f=1.

For information on setting hard coded (or execution) arguments, see the
Defining Entry Points in Chapter 6. Any additional parameters can be passed
through the URL.

Configuring Proxy Settings
In a many organizations, client machines access deployment servers through a
network proxy. In this environment, DeployDirector bundles must contain
proxy information to ensure communication between the client and server
machines (e.g. for initial deployment, bundle updates). Organizations may also
use an SSL proxy in conjunction with, or instead of a network proxy.

Whether and how proxy information is handled with bundles depends on how
they are configured in the Administration Tool. A bundle can be configured to
contain proxy information before it is deployed, request the client-side user to
enter the information during deployment, or a combination of the two.
Properties related to proxy configuration are found when the Proxy and User
Queries property nodes have been selected in the Administration Tool.
84 � Chapter 5

Selecting the Proxy node reveals three possible configuration options for the
bundle: Use Browser, No Proxy, and Define Proxy.

� The Use Browser setting configures the bundle to detect and use the proxy
settings of the client-side browser (whether it is Internet Explorer or
Netscape Navigator) during the initial installation.

� Define Proxy configures the bundle to use the proxy information that is
entered in the accompanying text fields. This option can be used if the
proxy server for deployment is different from the one used for non-
deployment tasks, or if there is an SSL proxy.

� No Proxy prevents the use of a proxy even if the client’s browser is
configured to use one.

While the options under the Proxy node configure a bundle’s proxy settings
before deployment, selecting the User Queries node reveals the CAM Config
check box, which enables or disables proxy configuration during bundle
deployment. If it is enabled, the client-side user will be shown, as part of the
bundle’s installation process, proxy configuration fields.

In the above example, note that the HTTP Proxy Host text field is empty. If a
client-side end user was presented with this screen during the installation of a
bundle, they would have the opportunity to enter the proxy information on
their own. But, since the field is initially empty, it indicates that no default
proxy information was configured in the bundle.
Configuring Bundle Installation Properties � 85

This situation represents one of six possible outcomes when configured
properties under both property nodes are used together. It is important to be
aware and take advantage of the results of different combinations. The
following table outlines the outcomes on the client side with different
configurations under the Proxy node and User Queries node.

When setting proxy information, it is important to remember that the CAM
only operates through one proxy, and will always use the proxy information
from the last bundle it installed or updated. If proxy settings change, this must
be reflected in all affected bundles (i.e. new bundle versions with updated
proxy information must be created). However, it is equally important to keep
the old proxy in existence long enough for all users to download the new
bundle versions.

Configuring Browsers to Use Proxy Information
In order for client-side users with Netscape Navigator to receive proxy
information, JavaScript must be enabled in their browsers. Additionally, client-
side users with Microsoft Internet Explorer who disable proxy settings in their
browsers after a connection has been made will need to restart their browser or
clear their browser cache in order for the new settings to function. This
behavior is exclusive to Internet Explorer, as it retains proxy information for
visited URLs even after the proxy has been disabled.

Proxy Node,
Proxy Setting

User Queries
Node, CAM
Config

Outcome during bundle installation

Use Browser enabled client browser proxy information used and shown,
but user asked to confirm or input them

Use Browser disabled (default setting for new bundle versions)
client browser settings used but not shown, and
user not asked to confirm or input them

No Proxy enabled no proxy information used, thus no default
information shown; user asked to input proxy
information

No Proxy disabled no proxy information used; nothing shown to user

Define Proxy enabled proxy information set by system administrator;
user asked to confirm or edit settings

Define Proxy disabled proxy information set by system administrator;
user does not see them
86 � Chapter 5

Deploying with Proxies Present on the Network
When a proxy is present on your network, if your deployment network uses a
cluster, in order for the CAM and SAM to communicate properly through the
proxy, your cluster hosts need to be assigned server names. This is
accomplished by setting server names on the Server: Cluster Configuration:
Server Names page using the Remote Administrator. (Please refer to The
Client-Side Visibility of Servers in a Cluster in Chapter 3.)

Configuring proxy information in the Administration Tool

1. Expand the Install Data node.

2. Select the Proxy node.

3. In the right pane, select the proxy setting that matches your needs for your
deployment network.

If Define Proxy is selected, enter the host name of the proxy, and the
port on which it can be found. You can also enter similar information
for an SSL proxy in place of, or in addition to the standard proxy.

Finally, list any host names that can be reached without the use of the
proxy (which is rare, but possible).

The following are the guidelines for listing non-proxy host names:

� Entries should be separated with “|”
� Host names and IP addresses are valid, e.g.

“11.22.33.44|www.quest.com”
� In order to allow the matching of any host in a domain, start the host

name with “.” (e.g. entering “.quest.com” will match any host name
that was a part of *.quest.com, such as www.quest.com, or
ftp.quest.com).

4. Continue to set other bundle properties, then click File > Update to commit
these changes.
Configuring Bundle Installation Properties � 87

Allowing client side users to configure proxy information

1. Expand the Install Data node.

2. Select the User Queries node.

3. In the right pane, select the CAM Configuration check box if during the
bundle installation process you want the client-side user to be shown the
proxy information used by the bundle, with the possibility of editing.

When the check box is enabled, the proxy configuration dialog is
included as part of the bundle’s installation process.

Depending on how you configure settings under the Proxy node, client-
side end users may be required to enter proxy information (including
the proxy host name and port and, if necessary, any non-proxy hosts). It
is recommended that you provide this information on your main
HTML-based installation page for client-side users if it is necessary for
users to enter values themselves.

4. Continue to set other bundle properties, then click File > Update to commit
this change.

Passing Cookies to the Installer or Launcher Applet
In typical Web environments, when clients connect to Web servers, they receive
and store cookies. This information is used the next time the client establishes a
connection with the server. By default, the introduction of DeployDirector to
your network prevents the normal passing of cookies. However,
DeployDirector can be configured to accommodate the use of cookies for
identification (i.e. authentication and authorization) for single sessions.

Once properly set up, DeployDirector can pass a cookie to its installer or
launcher applet which will then by used by the CAM (or the application from
the end user’s perspective) to connect to the server with identification
information.
88 � Chapter 5

Configuring DeployDirector to Pass and Use Cookies
With typical client-Web server interaction, the client connects to a Web server
which returns a cookie that remains on the client machine. When using
DeployDirector, a cookie is sent to the launcher or installer applet and is saved
on the client side. This cookie is then located and used by the CAM whenever
client-server communication occurs (i.e. when the application that uses the
cookie has started).

The implementation of this functionality is one that emphasizes automation.
Defining cookie parameters in the access URL for the application is all that is
required to enable cookie passing. Alternatively, you can customize the
launcher or installer’s front end HTML file yourself to include the cookie
information. (Please see Customizing the Install, Launch, and Error Pages on
page 81 for more information on customizing front end HTML pages.)

Enabling cookie passing to the installer or launcher applet automatically:

1. Ensure the application meant to be used with the cookie has been
committed to the server.

2. Ensure the completed cookie file has been placed on the server, so that
DeployDirector can retrieve it when it needs to pass it to the launcher or
installer applet.

3. When creating an access URL for end users (e.g. on an HTML-based
launch page for all of your applications), create the launch or install URL
for the bundle to include cookie parameters so that a URL such as this:
http://localhost/servlet/application/launch

you would include cookie parameters:
http://localhost/servlet/application/launch?COOKIE=
 name=cookiename;value=cookievalue;date=expirydate

4. For the mandatory name parameter, enter the name of the cookie.

5. For the mandatory value parameter, enter the string that represents the
cookie

6. For the mandatory date parameter, enter a properly formatted date string
that adheres to accepted specifications (i.e. RFC822, 850/1036, 1123, or
Netscape cookie specifications). This date defines when the cookie will
expire.

7. For the optional domain parameter, (whose default value is the host name of
the server that originally sent the cookie), you can modify it to match
another domain (e.g. “.quest.com”).

Once this cookie parameter has been added to the launch or install
command, whenever a client-side user launches or installs the bundle,
the cookie will be retrieved from the (which) directory, and sent to the
client side to be locally stored.
Configuring Bundle Installation Properties � 89

Enabling cookie passing to the installer or launcher applet manually:

1. Ensure the application meant to be used with the cookie has been
committed to the server.

2. Ensure the completed cookie file has been placed on the server, so that
DeployDirector can retrieve it when it needs to pass it to the launcher or
installer applet.

3. Create a customized application.html page for the launcher or installer
applet, which will include the cookie applet call.

Important: This sample
applet code is meant to
server only as an example
of how to set cookie
parameters. Ensure you
have entered settings for
your own applet and
cookie.

4. In the custom application.html file, replace the
<!--Placeholder:APPLET--> comment with the following:

<APPLET>
CODE="com/yourorganization/install/Installer.class"
CODEBASE="."
ARCHIVE="http://localhost:8080/install/

<!--PlaceHolder:APPLICATION-->/install.jar"
NAME="<!--PlaceHolder:APPLICATION-->, version

<!--PlaceHolder:VERSION> Installer"
WIDTH=500
HEIGHT=300
alt="You would need a Java-enabled browser to see this."
<PARAM NAME="CABBASE" VALUE="http://localhost:8080/

install/<!--PlaceHolder:APPLICATION-->/
install.cab">

<PARAM NAME="BUNDLE" VALUE=
"<!--PlaceHolder:APPLICATION-->">

<PARAM NAME="VERSION" VALUE=
"<!--PlaceHolder:VERSION-->">

<PARAM NAME="SERVER" VALUE="http://localhost:8080/
install/bundle">

<PARAM NAME="LAUNCH" VALUE="false">
<PARAM NAME="NEXT_PAGE" VALUE="">
<PARAM NAME="COOKIE"

VALUE="name=cookiename;value=cookievalue;domain=

.yourorganization.com;expiry=expirydate>

</APPLET>

5. For the mandatory name parameter, enter the name of the cookie.

6. For the mandatory value parameter, enter the string that represents the
cookie

7. For the mandatory date parameter, enter a properly formatted date string
that adheres to accepted specifications (i.e. RFC822, 850/1036, 1123, or
Netscape cookie specifications). This date defines when the cookie will
expire.
90 � Chapter 5

8. For the optional domain parameter, (whose default value is the host name of
the server that originally sent the cookie), you can modify it to match
another domain (e.g. “.quest.com”).

Once set, whenever a client-side user launches or installs the bundle,
the cookie will be retrieved and sent to the client side.

Configuring Bundle Installation Properties
Properties that affect how a bundle is installed on the client side are typically
found under the Install Data and Platform nodes in the Administration Tool.
Unlike bundle installation properties that affect end-user options (which are
discussed in the next section of this chapter), the options discussed here affect
how administrators require the bundle to be installed. Administrator concerns
include in which directory the bundle is installed, how the bundle affects the
client machine’s CLASSPATH and registry settings, and which of the bundle’s
files are the readme and license files.

Some bundle properties must be defined in order for proper installation to
occur. The Administration Tool verifies that these essential properties have
been defined before the bundle can be saved and uploaded to a server.

Setting Bundle Install Directories
The bundle’s location on the client machine is partially determined by values
you enter for the Vendor and Platform installation directories. A bundle’s
Vendor Directory, Platform Install Directory, and the User Queries Install
Directory all affect how a bundle is installed and launched. (Please refer to
Bundle Installation Directories: Creation Strategies later in this chapter for
more information on using these properties together.)

Setting Vendor install directory

1. Expand the Install Data node.

2. Select the Vendor node.

3. In the right pane, in the Directory field, enter the Vendor Directory
(without any drive letters) in which the bundle will be installed.

The same directory should be set for all the same bundle versions,
ensuring that all versions are installed in the same directory on the
client machine.

During installation, the Vendor Directory is appended to the User
Queries Install Directory (if enabled), or the Platform Install Directory.
Configuring Bundle Installation Properties � 91

4. Continue to set other bundle properties, then click File > Update to commit
this change.

Setting Platform-specific install directory

1. Expand and select the Platform All node.

2. In the right pane, in the Install Directory field, enter the default directory
(including a drive letter for Windows clients) in which the common bundle
files are installed.

If no Platform Install Directory is specified, default directories are used
(c:\Program Files on Windows, /(root) on Unix).

3. If bundle contents need to be installed in a platform-specific directory, the
Platform node contains other platform child nodes (e.g. Windows/i386,
Unix/sparc), each of which contains its own Install Directory field.

If during installation, the user is queried for an install directory, the
entered path replaces this value. Additionally, the Vendor Directory
path is appended to this directory.

4. Continue to set other bundle properties, then click File > Update to commit
this change.

Designating License and Readme Files
If your bundle contains license and readme files, you can indicate which files
serve these roles. When a bundle is being installed by a client-side user, the
license file you select will be displayed before the bundle installation begins.
Similarly, the readme file you select will be displayed at the end of the
installation. (You can also determine whether or not the user will have an
opportunity to decline viewing the readme file. This is covered in Configuring
End-User Bundle Installation Options, found later in this chapter).

Designating a license file in a bundle

1. Ensure that all the desired files (including the license file) have been added
to the bundle.

2. Click the Install Data node.

3. In the right pane, click the License File combo box, and select your license
file from the list of files that are part of the bundle.

4. Continue to set other bundle properties, then click File > Update to commit
this change.
92 � Chapter 5

Designating a readme file in a bundle

1. Ensure that all the desired files (including the readme file) have been added
to the bundle.

2. Click the Install Data node.

3. In the right pane, click the Readme File combo box and select your readme
file from the list of files that are part of the bundle.

4. Continue to set other bundle properties, then click File > Update to commit
this change.

Determining how Bundles Affect Client Machine Settings
If settings on the client machine (e.g. registry or CLASSPATH settings) need to
be added or modified in order for the bundle application to run properly, a
bundle can be configured to have these changes made upon installation.

In addition to registry and CLASSPATH values, DeployDirector System
Properties can also be set, which are environment variables that are passed
from the CAM to the application when it begins running. Clicking a bundle’s
Install Data node, then System Properties node reveals all the settings for that
particular bundle version:

One property value that is typically used is $(INSTALLDIR), which is the home
location of the application that has been deployed (i.e. [installdir]/
[vendorname]/[bundlename]). It is a macro that is replaced with the directory
path on which the application was installed on the client side.

You can also use the user.dir Java system property as a DeployDirector
system property. Setting this to $(INSTALLDIR) ensures the bundle’s current
directory is its install directory. If your bundle requires files at run-time, and
you know their location relative to the install directory, using this setting helps
maintain system focus on the correct directory. This property is also particularly
useful when using the
/launch request (please see Launching Applications, later in this chapter).
Configuring Bundle Installation Properties � 93

System Properties allows you a measure of control over how exceptions are
handled by the CAM. The following table lists the properties that can be set
using the Administration Tool. (These properties are independent of each
other.).

Setting system properties for a bundle

1. Ensure that all files have been added to the bundle.

2. Expand the Install Data node.

3. Select the System Properties node.

4. Click Add to reveal property fields for a new system property entry.

Any system environment variables that need to be set in order for the
application to run can be defined here.

5. In the Name field, enter the name of the system property (e.g. app.home).

6. In the Value field, enter the system property value (e.g. $(INSTALLDIR)).

7. If required, continue to define more System Property entries, as well as
other bundle properties, then click File > Update to commit these changes.

Name Result Value
(option/default)

deploy.exception.showdialog errors sent to dialog box false / true

deploy.exception.print errors sent to the console (if present) false / true

deploy.exception.logtoserver errors written to the Client Log false / true

deploy.exception.locallog errors logged to a client-side file,
located at the root of the bundle
directory

<filename> / null

deploy.stdout.locallog in addition to the console, output
is logged to a client-side file,
located at the root of the bundle
directory

<filename> / null
94 � Chapter 5

Setting CLASSPATH information for a bundle

1. Ensure that all files have been added to the bundle.

2. Expand the Platform All node.

3. Expand the Java node.

4. Select the Classpath node.

5. In the right pane, click Add to reveal a new CLASSPATH entry.

6. Click the Path field. It acts as a combo box, and displays all JARs and ZIP
files amongst the cross-platform files that you included under the Platform
All node.

7. From the list, select the JAR you would like to add to the CLASSPATH.

8. Continue to add all CLASSPATH entries that the bundle requires in order
to execute properly (as an alternative, you can click Add All JARs to
automatically add an exhaustive list of CLASSPATH entries).

9. If required, continue to define other bundle properties, then click File >
Update to commit these changes.

Registering and creating Windows registry entries for a bundle

1. Select the Install Data node.

2. In the right pane, enable the Register Application with OS check box.

Enabling this option places the bundle in the Windows Add/Remove
Programs control panel.

3. In the left pane, select the Windows Registry node.

4. Click Add to reveal property fields for a new registry entry.

5. In the HKEY combo box, select the high level key of which this entry is a
component.

6. In the SKEY field, enter the entry’s subkey.

7. In the Name field, enter the name (if required).

8. In the Value field, enter the string value for entry. (Only string values are
accepted.)

9. If required, continue to define more Windows registry entries, as well as
other bundle properties, then click File > Update to commit these changes.
Configuring Bundle Installation Properties � 95

Configuring End-User Bundle Installation Options
Bundles can be configured to query client-side users during the installation of a
bundle. Specifically, users can be asked where on their local file system they
would like the bundle to be installed (the User Queries Install Directory), and
whether they would like desktop shortcuts to be installed. Shortcuts can point to
a Java file (i.e. a class defined as an Entry Point), or a support file (e.g. PDF,
HTML, or text file).

Permitting users to specify an install directory

1. Expand the Install Data node, and select the User Queries node.

2. In the right pane, select the Install Directory check box, configuring the
bundle to query the user for one during installation. (The bundle’s Vendor
Directory is appended to this directory.)

If the Install Directory check box is disabled, the bundle’s install path
will consist of the Platform Install Directory and the Vendor Directory.
Please refer to Configuring Bundle Installation Properties for more
information on these bundle properties.

Vendor Directory, Platform Install Directory, and the User Queries
Install Directory all affect how a bundle is installed and launched.
Please refer to Bundle Installation Directories: Creation Strategies for
more information on using these properties together.

3. Continue to set other properties, then click File > Update to commit.

Setting bundle desktop shortcut properties

1. Ensure that all files have been added to the bundle.

2. Ensure that at least one of these files has been designated as an entry point
for the bundle.

The number of entry points you set up depends entirely on how many
of your bundle’s files are meant to be executable files on the client side.
Setting entry points is covered in the section entitled Defining Entry
Points in Configuring Bundle Runtime Properties.

3. Expand the Install Data node.

4. Select the Shortcuts node.

5. In the right pane, click Add to display the property fields for the new
shortcut.

6. In the Type combo box, indicate whether the shortcut being created will
point to a Java class, File, Update script, or Uninstall script.

7. In the Name field, enter the name with which the shortcut will be referred
on the client machine.
96 � Chapter 5

8. In the Link combo box, select the entry point that is associated with this
shortcut.

The information available in the Link list depends on the shortcut Type
you chose in a previous step. If you chose a Java shortcut, the Link list
displays only defined entry points. If you chose a File shortcut, you
need to indicate which bundle file is associated with the shortcut. If
Update or Uninstall shortcuts are used, a Link definition is not
necessary, since the client-side functionality for these actions are
automatically handled by DeployDirector.

9. From the Desktop combo box, select whether or not the shortcut is meant
to appear on the client machine desktop in addition to its Start Menu (for
Windows clients).

10. In the Win Icon combo box, select the bundle file that is the shortcut image
(which is typically an .ico or .dll file).

11. If a .dll file was selected from the Win Icon combo box in the previous
step, enter the index number of the desired icon in the Win Icon Index
field.

Entering proper values for these fields and combo boxes defines a
shortcut profile, where a Start Menu shortcut (and if enabled, a desktop
shortcut), using the defined icon image, is created on the client
machine.

The choice over the creation of a desktop shortcut (assuming a value of
True was selected from the Desktop combo box) can be given to the
user.

12. Select the User Queries node.

13. In the right pane, enable the Desktop Shortcuts check box if you want the
user to choose whether or not one is created. Disabling the check box will
leave this choice to you. (The choice made in the Desktop combo box,
under the Shortcuts node earlier in this procedure determines this.)

14. Continue to set more shortcuts, as well as other bundle properties, then
click
File > Update to commit these changes.
Configuring Bundle Installation Properties � 97

Bundle Installation Directories: Creation Strategies
In earlier sections (Configuring Bundle Installation Properties, and Configuring
End-User Bundle Installation Options), you learned how to set the Vendor
Directory, Platform Install Directory, and User Queries Install Directory. Each
of these directory values can contribute, through appending or replacement, to
a bundle’s final installation path on a client machine. While the presence of
three directory-related bundle properties may necessitate extra thought in how
they are defined, the result is a large amount of flexibility with how bundles can
be installed on different types of machines. The following table outlines the
three bundle directory properties

How these bundle properties are configured depends on your organization’s
deployment strategy. Whether you require heavily or lightly controlled
installations, bundles can be configured to match that need.

Vendor Directory Platform Install Directory
User Queries Install
Directory

Where it is set Install Data node > Vendor
child node > Directory
property text field.

Platform node > Install
Directory property text
field (can also be set in
other Platform child
nodes).

Install Data node > User
Queries child node >
Install Directory check
box.

Function Sets the vendor (i.e.
bundle creator) directory.

Sets an platform-specific
install paths.

When enabled, allows the
end user to enter an
installation path.

Additional Info Mandatory setting.

Same directory value
should be set for all
versions of the same
bundle.

For Windows clients,
must contain a drive letter.

If not set, default
directories include
c:\Program Files on
Windows, and /(root) on
Unix.

If enabled, user-inputted
directory path overrides
Platform Install Directory
information.

How it affects the
bundle’s
installation path

Always appended to the
Platform Install Directory,
or User Queries Install
Directory.

Acts as first half of
installation directory path,
but replaced if user inputs
directory.

If enabled, user-inputted
directory replaces
Platform Install Directory.
Launch command
functionality cannot be
used.
98 � Chapter 5

Enforcing Strict Bundle Installation Paths
Keeping complete control over numerous versions of a bundle to numerous
clients has obvious benefits. You can configure bundles so that they are installed
in a controlled manner; one that allows system administrators to know exactly
where bundles and bundle versions can be found on client machines.

When you configure bundle properties that affect installation directories, hard
code install directories, and disable user-inputted paths. Consider this example:

When installing a bundle with these settings, the user will be shown the
installation path, but they will not be able to change it.

Allowing User-Defined Installation Paths
If your organization does not need to keep a very close eye on where client-side
users are installing applications, then you can give users complete control over
where bundles are installed. Consider this example:

During installation of this bundle, the install directory is presented to the client-
side user, who has an opportunity to change it. If they continue without
changing it, the installation path consists of the default Platform Install
Directory and Vendor Directory. However, if the user modifies the path, their
inputted directory path replaces the default directory, and the vendor directory
is then appended to it.

Bundle Property Setting

Vendor Directory Vendor

Platform Install Directory D:/InstallHere

User Queries Install Directory disabled

Bundle install directory on client machine D:/InstallHere/Vendor/BundleName

Bundle Property Setting

Vendor Directory Vendor

Platform Install Directory none

User Queries Install Directory enabled

Bundle install directory on Windows
client machine

C:/Program Files/Vendor/BundleName
 or
C:/User/Defined/Directory/Vendor/BundleName
Configuring Bundle Installation Properties � 99

Configuring Installation Directories for Use with the Launch
Command
The /launch request, discussed later in this chapter, gives end users easy access
to applications that have been installed on their Windows-based client
machines (e.g. a one-click application launch from an internal Web page). If a
requested bundle is not present on the client machine, it is first installed, then
run.

Given this launch/install behavior, DeployDirector must know exactly where
the bundle can be found on client machines if it is to determine whether or not
it exists. Thus, the only way to ensure that bundles work with the /launch
command is to hard-code installation directory paths by disabling the User
Queries Install Directory.

As an example, consider a bundle that does not yet exist on a client machine,
and is called with the /launch command: it will first be installed. However, if an
end user is given an opportunity to request the bundle with the /install
command, and has the option to define where it is installed, problems may
ensue if the /launch command is used afterwards. Consider a bundle whose
install directory properties have been configured to query the end user for an
install directory:

If this bundle is called with the /launch command, it will first be installed. Even
though the bundle has been configured to query the user for an install
directory, the /launch command automatically skips that step.

However, if the bundle is called with the /install command, during
installation, the user will have an opportunity to enter a directory. This inputted
path (in this case, C:\User\Defined\Directory), will replace the Platform
Install Directory (in this case, the default C:\Program Files).

When the user launches this application in the future, using information found
in the bundle’s settings, DeployDirector will look in C:/Program Files/

Vendor/ for the bundle. Since the user installed it elsewhere, the application will
not be found, and will be installed again in the searched directory.

This problem can be avoided if either the user is only given access to
applications with the /launch command, or bundles are configured so that the
User Queries Install Directory property is disabled.

Bundle Property Setting

Vendor Directory Vendor

Platform Install Directory none (defaults to C:/Program Files)

User Queries Install Directory enabled (user enters C:\User\Defined\Directory)

Bundle install directory on Windows
client machine

C:/User/Defined/Directory/Vendor/BundleName
100 � Chapter 5

Extending Installation Options with Custom Classes
During the installation, updating, and uninstalling of applications with
DeployDirector, installation events are generated to pass information about the
state of these processes. The InstallEvent class is used to detect install events
and pass information to a complementary listener class. These two classes can
be used to customize the bundle’s installation process.

Using the DeployDirector API, an administrator can create a registered
InstallListener class which will listen for InstallEvent objects so that the
customized code can be executed in response to these events. For example,
depending on the needs of your organization, this feature can be used by the
network administrator to notify the end user about the status of the install
process, display a custom splash screen on the client side just before beginning
an installation, display a custom dialog box, or move files around after
installation.

The custom class or JAR which you create has to implement the
InstallListener class. The created custom class or JAR must be added to the
DDCAM bundle and to the CAM CLASSPATH, so that it can be used when
the CAM is started. This first step ensures that the custom class or JAR will be
available before the bundle is downloaded to the client. Your custom class must
then be specified in the bundle as a recipient of installation events.

The InstallListener interface can be found in the com.sitraka.deploy
package of the DDSDK. For further details on using InstallListener and
InstallEvent, please refer to the API Documentation and the DeployDirector
SDK Programmer’s Guide, both of which are provided with the DDSDK
bundle installation.

Here is an overview of the process:

1. Create a custom class or JAR that implements the InstallListener class.

2. Add the class or JAR you created to the DDCAM bundle and its
CLASSPATH.

3. Specify the class you created to the application that will be deployed to
client desktops.
Configuring Bundle Installation Properties � 101

Adding the customized class or JAR to the DDCAM bundle and its CLASSPATH

1. In the Administration Tool, click the Bundles tab.

2. Expand the DDCAM node and click the current version.

3. Click the Copy Server Version button.

This will create a new bundle version based on the most recent version in
the vault.

4. Enter the version name in the Copy Server Version dialog box.

5. Click the new DDCAM version you created in the preceding step. Add
your comments about this version of the DDCAM in the Description field
in the right pane.

6. Expand this DDCAM version node.

7. Select the Platform All node.

8. Click the Add Files button.

9. In the Select Files dialog box, ensure that you set the correct Source
Directory to the class you have created and click Open. If you have created
a JAR, add it to the DDCAM bundle.

10. In the Platform All > Java > Classpath node, add the custom class or JAR to
the DDCAM’s CLASSPATH.

11. Commit the changes to the server by clicking File > Update Server.

The next section outlines how to specify the custom class, which implements
the InstallListener class, to the bundle that will be deployed across the
network to the client desktops. In both cases, please do not commit the changes
to the server until you have completed configuring the bundle.

Specifying the custom class to your bundle

1. Expand the version node of your bundle.

2. Click the Install Data node.

3. In the Install Event Class field, enter the full package name of your custom
class that implements the InstallListener class (you do not need to
specify the extension .class).

Ensure that you have added your class or JAR to the DDCAM and its
CLASSPATH, as described in the “Adding the customized class or JAR to
the DDCAM bundle and CLASSPATH” section.

4. Continue to set other bundle properties, then click the Update Server
button or File/Update to commit the changes to the server.
102 � Chapter 5

 Chapter 6
Configuring Bundle Runtime Properties

hereas in previous chapters, you learned how to define bundle
content as well as installation properties, this chapter focuses on
how bundles act after they are installed. Specifically, certain

properties affect how a bundle or application behaves when it is started up by
client-side users. Runtime behavior begins with a bundle’s defined entry point
(the file that runs the application), working through JRE and VM issues, as well
as user authentication and authorization. Security and exception handling and
output are ongoing runtime issues that can also be configured.

Defining Entry Points
When you add files to a bundle, it is important to flag certain files whose roles
need to be known in order for the bundle to be deployed and executed
successfully. In addition to designating a particular bundle file as the readme,
and another as the license information, you can also define which files are the
entry points to the application.

Entry points indicate which class is executed by the CAM when the client-side
user wishes to run the application in the deployed bundle. Generally, setting up
an entry point should also be accompanied by the definition of a shortcut for
that same file, so after installation, the end-user can easily run the application.
(For more information about setting shortcuts, please see Configuring End-User
Bundle Installation Options in Chapter 5, Configuring Bundle Installation
Properties.)

Designating Bundle Files as Entry Points

1. Ensure that all files have been added to the bundle.

2. Expand the Platform All node.

3. Expand the Java node.

W

103

4. Select the Entry Points node.

5. In the right pane, click Add to display the property fields for a new entry
point.

6. In the Name field, enter a name for this entry point.

Make a note of the name given to the entry point, as you will need to
select it if defining desktop shortcuts. (Please see Configuring End-User
Bundle Installation Options in Chapter 5 for more information.)

7. In the Class field, enter the package and name of the class you want to
designate as an entry point, ensuring that you exclude the .class extension
(e.g. com.company.package.Main). This class should be among those
already included in the bundle.

It is important to ensure the package and class match that of the file in
your bundle. Otherwise, the CAM will not be able to locate it and
generate an executable file.

8. In the Arguments field, enter any execution arguments for the entry point if
required.

Note: If you update the arguments for a newly created version of the
bundle, the end user must allow the application to be updated, then
close and re-launch the application. Otherwise, the application will be
launched with the previous version’s arguments.

9. If required, continue to define more entry points, as well as other bundle
properties, then click File > Update Server to commit these changes.

Bundle JRE Requirements
As your organization develops applications, it is likely that different apps will
have different JRE requirements. You can define a bundle so that its JRE
requirements (i.e. a particular version of a specific vendor’s JRE) are known to
DeployDirector, which the latter uses during deployment.

Without knowing which JRE vendors and versions are available on all client
machines, DeployDirector eliminates second-guessing by sending out the
required JRE when deploying a bundle. (JREs required by all bundles are
stored on the server.) The enforced sending out of the required JRE ensures
that the deployed application will run. However, to avoid redundancy,
DeployDirector will ensure bundles that have the same JRE requirements, and
are located in the same Vendor install directory, have not been deployed to the
target client machine first. If this is the case, the JRE is not sent.
104 � Chapter 6

Checking for JREs on the Client Side
Even though DeployDirector can deploy required JREs from its vault to client
machines, and the CAM can always search for these vault-based JREs when
installing a bundle, it is possible that an appropriate JRE already exists (e.g. one
that came with the client machine’s OS).

When configuring a bundle, you can enable a Search for Installed JREs
operation, which attempts to find an installed JRE that is used by the bundle. If
an appropriate match is found, a duplicate JRE is not deployed from the vault,
reducing download time.

Deciding whether you want the CAM to search for an existing JRE that was not
deployed by DeployDirector depends on how important reduced download
times as well as smaller installation footprint (particularly where multiple JREs
are installed in different Vendor directories) are in relation to increased quality
control.

While using the Search For Installed JREs option can save time, disabling it
ensures tighter control over client machine profiles. For example, if a JRE not
associated with DeployDirector is used but is then subsequently removed, the
bundle will no longer work. JREs installed by DeployDirector cannot be
removed using legitimate OS methods (e.g. the Add/Remove Programs
Control Panel), ensuring that required JREs will always be available to bundles,
and will not incidentally be removed by other application installation/removal
tools.

Setting the JRE properties for a bundle (including VM parameters)

1. Ensure the required JRE is present on either the client machine or in the
vault.

2. Determine the minimum or specific JRE requirements for the application in
your bundle.

3. Select the Install Data node.

4. In VM Parameters field in the right pane, enter any parameters that the
JRE requires to successfully run the bundle. The information entered in this
field is appended to the JRE execution command.

You may wish to set the -noverify parameter here if your bundle will
be used with a 1.1 VM. Please refer to Class Verification and Using the -
noverify VM Parameter discussed later in this chapter for more
information.

5. Expand the Platform All node.

6. Select the Java node.

7. If the required JRE comes from a specific vendor (i.e. IBM or Sun), select it
from the Vendor combo box.
Configuring Bundle Runtime Properties � 105

8. In the Version field, enter the JRE version required by the application.

9. In the Version combo box, select the condition that matches the
exclusiveness of the JRE version definition.

10. Select the Share VM check box if this bundle is meant to share a VM with
any other bundle that also has this feature enabled, and is using the same
JRE. Disable the check box if the application is meant to always run using
its own JRE.

You should be aware of how DeployDirector handles shared VMs
before setting this property, as well as conflicts with PLAF for third
party libraries. Please refer to the next section, Sharing VMs Between
Multiple Applications, for more information.

11. Enable or disable the Search for Installed JREs check box depending on
whether the CAM should first search on the client machine for an
appropriate JRE that was not installed by DeployDirector.

12. Continue to set other bundle properties, then click File > Update Server to
commit this change.

Sharing VMs Between Multiple Applications
DeployDirector helps save system resources on the client side by allowing
multiple applications to use a shared VM, provided that the VM versions
required by the applications are compatible and a shared CAM is used. The
Share VM check box can be found under the Bundle_Name > Version >
Platform(All) > Java node. If you select this check box while configuring the
properties of the bundle, then this particular bundle will share a VM with any
other deployed, running application with an enabled Share VM property.

This feature is not intended to improve the start up time, but it is meant to save
system resources on the client machine and to allow updating and restarting the
application without restarting the VM. When your application is run on the
client side, its own VM originally starts, but the CAM searches for other active
identical VMs. If one is found, the first VM is then shut down and the
responsibility of running the application is transferred to the other VM.

If you are creating bundles that are meant to share the same VM, they must be
configured to be installed in the same vendor directory on client machines. (For
information on setting the vendor directory, please see Setting Bundle Install
Directories, in Chapter 5, Configuring Bundle Installation Properties.)
106 � Chapter 6

Sharing VMs: the Effect on the CAM’s Class Loader
When running a bundle, the setting of the Share VM property affects which
class loader (i.e. custom class loader or system class loader) is used by
DeployDirector for the application classes. When Share VM is enabled,
DeployDirector uses its custom class loader which allows a deployed
application to shut down completely and removes any file system locks on the
class and JAR files from which the application was loaded.

When this custom class loader is used, only the CAM classes are available to
the system class loader. Consequently, if any class in the application requests
the system class loader to load other application classes or resources, for
example by calling java.lang.ClassLoader.getSystemClassloader(), a
ClassNotFoundException or similar will be generated.

This situation is not common, but occasionally occurs in third-party libraries
which unnecessarily use the system class loader. It also occurs when using
custom PLAF (Pluggable Look and Feel) classes due to an unfortunate oversight
in the current implementation of Swing. In these situations, disabling Share VM
(thus using the system class loader) will work around the problem.

The Share VM Property and the System Class Loader
If the client application implements custom PLAF (Pluggable Look and Feel)
classes or any classes/third party libraries that directly request the system class
loader, ensure that you leave the Share VM box unchecked (default setting)
when configuring the properties for the bundle.

Class Verification and Using the -noverify VM Parameter
Class verification ensures that all classes referenced, and interfaces
implemented by a loaded class have also been loaded.

By default, JDK 1.1 VMs allow you to use lazy verification. In this case, if an
application’s code references a class that is not accessed during the execution of
the program, this referenced class is not searched for. However, using the -
verify flag forces recursive verification of all referenced classes.

For JDK 1.2 (or later) VMs, lazy verification does not exist. All classes
referenced anywhere in the application code must be available to be loaded
and verified when the referring class is loaded.

Despite the availability of lazy verification in 1.1 VMs, aggressive verification is
triggered when bundles are accessed with DeployDirector due to a JDK 1.1
bug. You need to configure a bundle to use the -noverify VM parameter if you
wish to use, or are relying on lazy verification with applications using the 1.1
VM.
Configuring Bundle Runtime Properties � 107

Using the -noverify parameter will also dramatically improve the startup time
of JDK 1.1 apps that use Swing. It is recommended that this parameter is set for
all applications that use the JDK 1.1 VMs, unless aggressive verification is
needed. VM parameters for a bundle can be set under the Bundle_Name >
Version > Install Data node. (Please refer to the procedure entitled Setting the
JRE properties for a bundle (including VM parameters), for information on
how to set this property for a bundle.)

Client-Side Exception Handling and Output
By default, bundles are configured so that exceptions are sent to the console
window (if present), reported to the end user with a dialog box, and written to
the server’s Client Log. Additionally, standard output is sent to the console
window.

Bundles can be configured so that standard errors are sent to any number of
these destinations, or error reporting can be turned off. Standard errors and
output can also be logged to separate client-side files. All of these properties are
defined in a bundle’s System Property node (please see Determining how
Bundles Affect Client Machine Settings in Chapter 5, Configuring Bundle
Installation Properties).

Configuring Standard Exception and Output Destinations
Error reporting destinations can be set independently of each other. When
configuring a bundle, if you want to disable error reporting in the console,
dialog box, or Client Log, its property needs to be given a false value. In order
to write standard errors or output to a client-side file, you need to provide a file
name. All of these are properties and values are possible entries for the System
Property node:

Name Result Value
(option / default)

deploy.exception.showdialog errors sent to dialog box false / true

deploy.exception.print errors sent to the console (if present) false / true

deploy.exception.logtoserver errors written to the server’s
Client Log

false / true

deploy.exception.locallog errors logged to a client-side file,
located at the root of the bundle
directory

<filename> / null
108 � Chapter 6

In the following example, all standard errors will be reported in a client-side file
(error.log) only. In addition to the console, standard output will also be
written to a client-side file (output.log):

Note: Bundles that have been configured to report standard errors and/or
output in client-side files, must not share the same VM. If configuring a bundle
to write to files, disable its Share VM property (found in the Platform (All) >
Java node for that bundle version).

End-User Authentication and Authorization
In this chapter, authentication and authorization are discussed in the context of
a bundle’s runtime properties. Specifically, the following sections center around
the configuration of properties that affect how authentication and authorization
occur when an end-user attempts to run it on the client side.

In addition to runtime settings, there are other important concepts related to
authentication and authorization, and how the Administration Tool can be used
to manage end-user lists, and create associations between bundles and users.
Please refer to An Overview of User Authentication and Authorization in
Chapter 9 for more information.

deploy.stdout.locallog in addition to the console, output
is logged to a client-side file,
located at the root of the bundle
directory

<filename> / null

Name Result Value
(option / default)
Configuring Bundle Runtime Properties � 109

The Authentication and Authorization Process
While different authentication and authorization classes exist (whether they are
the default, or your own customized classes), the process of allowing a user to
download and install a bundle follows the same general pattern:

1. The authentication and authorization process is initiated when a client-side
request for a bundle or bundle update is sent to a server.

The bundle’s Connection property settings determine whether this
request is initiated by the user, or sent automatically by the bundle.

2. The transfer of authentication information begins on the client side. It is
either entered by the end user and passed to the CAM, or the CAM
receives the user request and retrieves cached user authentication
information.

All default DeployDirector authentication and authorization classes use
caching. If authentication information is required by the user, they are
only required to provide it once (i.e. the first time they request a
bundle).

3. The user authentication information is transferred to the server side (SAM),
where its validity is verified.

4. After the user has been authenticated, the SAM ensures they are authorized
to access the bundle or bundle version they are requesting.

5. If the user is authorized to access the bundle or bundle version, the SAM
initiates the deployment of that bundle.

At any point during this process, if the authentication or authorization
information does not match with user information stored on the client or server
side, the CAM informs the user that they are not able to download and install
the bundle they are requesting.

Obviously, the finer details of this authentication and authorization process
depend on the classes you use to carry it out, and the properties you set for
those classes in the Administration Tool.
110 � Chapter 6

Setting Authentication Properties
In DeployDirector’s Administration Tool, you can easily set authentication
properties for bundles. This is performed by choosing specific module (and
corresponding editor classes) that are ‘plugged in,’ and setting any required
properties in editors based in the Administration Tool.

When working with a new bundle or bundle version, selecting its Access
property node displays combo boxes for both authentication modules (client-
side authentication, and server-side authentication), as well as those for
authorization.

In the module’s property field in the right pane, you can enter the full package
name of the desired class, or select a class from the drop-down list:

Selecting classes in these Access property fields results in changes to the
bundle’s version.xml file. Corresponding to the properties structure in the
Administration Tool, authentication and authorization properties are
encompassed by the file’s ACCESS tag, which contains sub-tags that are
associated with the classes you choose.
Configuring Bundle Runtime Properties � 111

For example, making these class selections for the three access modules in the
Administration Tool would result in the following version.xml entry:

<ACCESS
ALLOWCACHE="true"
CLIENTAUTHENTICATION="com.sitraka.deploy.authentication.

ClientAuthenticateAll"
AUTHENTICATION="com.sitraka.deploy.authentication.

AuthenticateAll"
AUTHORIZATION="com.sitraka.deploy.authorization.

AuthorizeAll"/>

Allowing automatic authentication of all users

1. Select the bundle version’s Access node to reveal all of its access properties
in the right pane.

2. In the Client Authentication drop-down list, select the
ClientAuthenticateAll class (whose full package is
com.sitraka.deploy.authentication.ClientAuthenticateAll).

3. In the Authentication drop-down list, select the
(com.sitraka.deploy.authentication.) AuthenticateAll class.

4. Continue to configure your bundle, then commit these changes to the
server.
112 � Chapter 6

Authenticating users by matching server data with client names and passwords

1. Select the bundle version’s Access node to reveal all of its access properties
in the right pane.

2. From Client Authentication drop-down list, select the
(com.sitraka.deploy.authentication.) ClientUsernamePassword class if
user authentication information should consist of a user name and
password.

3. From the Authentication drop-down list, select the
(com.sitraka.deploy.authentication.) SimpleAuthentication class.

After selecting this class, you may want to review the contents of your
server-side data file with the Simple Authentication editor.

4. Click the Authorization/Authentication tab, then click the Authentication
child tab.

5. From the Authentication drop-down list, select the
(com.sitraka.deploy.authentication.) SimpleAuthentication class.

Important: The information
displayed in the list is
locally cached, thus is as
current as the last time you
refreshed it. It is important
to refresh lists when using
this editor.

Please refer to An
Emphasis On Server
Updating and Refreshing in
Chapter 9 for more
information.

Selecting this class displays a list of valid user authentication
information.

6. Click the Refresh button (or, File > Refresh) to ensure the list currently
reflects the contents of the server data file.

7. If required, review and edit the User ID and Password fields to match any
new changes in your organization’s pool of users. If you edit any fields,
press the Enter key to commit it.

You can learn more about managing lists of authenticated users in End-
User and Administrator Authentication Lists in Chapter 9.

8. Continue to configure your bundle, then commit this change to the server.
Configuring Bundle Runtime Properties � 113

Authenticating users by matching server data with client serial numbers

1. Select the bundle version’s Access node to reveal all of its access properties
in the right pane.

2. From Client Authentication drop-down list, select the
(com.sitraka.deploy.authentication.) ClientSerialNumber class if you
want a user’s identification key (typically just a user ID), but do not require
a password as their authentication information.

3. From the Authentication drop-down list, select the
(com.sitraka.deploy.authentication.) SimpleAuthentication class.

After selecting this class, you may want to review the contents of your
server-side data file with the Simple Authentication editor.

4. Click the Authorization/Authentication tab, then click the Authentication
child tab.

5. From the Authentication drop-down list, select the
(com.sitraka.deploy.authentication.) SimpleAuthentication class.

Important: The information
displayed in the list is
locally cached, thus is as
current as the last time you
refreshed it. It is important
to refresh lists when using
this editor.

Please refer to An
Emphasis On Server
Updating and Refreshing in
Chapter 9 for more
information.

Selecting this class displays a list of valid user authentication
information.

6. Click the Refresh button (or, File > Refresh) to ensure the list currently
reflects the contents of the server data file.

7. If required, review and edit the User ID and Password fields to match any
new changes in your organization’s pool of users. If you edit any fields,
press the Enter key to commit it.

You can learn more about managing lists of authenticated users in End-
User and Administrator Authentication Lists in Chapter 9.

8. Continue to configure your bundle, then commit this change to the server.
114 � Chapter 6

Authenticating users against a directory such as NIS

1. Ensure the CLASSPATH includes NIS.jar and ProviderUtil.jar, or if
you are using the standalone server, ensure these JARs have been placed in
the deploydirector/lib directory.

Important: Using NIS
authentication in this
context requires the use of
two specialized JARs.
Please refer to Server-Side
Authentication Module and
Editor Classes on page 156
for important information.

2. In the Administration Tool, select the bundle version’s Access node to
reveal all of its access properties in the right pane.

3. From the Client Authentication drop-down list, select the
ClientUsernamePassword class (whose full package is
com.sitraka.deploy.authentication.ClientUsernamePassword).

Since authentication is NIS-based, there is no need for end-users to
provide information themselves.

4. From the Authentication drop-down list, select the
(com.sitraka.deploy.authentication.) JNDIAuthentication class.

Selecting this Access Properties class means that the JNDI
Authentication editor needs to be reviewed.

5. Click the Authorization/Authentication tab, then click the Authentication
child tab.

6. From the Authentication drop-down list, select the
(com.sitraka.deploy.authentication.) JNDIAuthentication class.

Selecting this editor reveals the current status of the configuration file
for JNDI authentication. This server-side file points to the NIS naming
service, the JNDI-based authentication mechanism in DeployDirector.

7. In the Initial Context Factory field, enter the name of the class (with full
package) that is used to select the NIS provider.
Configuring Bundle Runtime Properties � 115

8. In the Naming Service URL text field, enter the NIS server URL. Valid
formats include:

nis://<hostname>/<domainname>
nis:///<domainname>
nis:/<domainname>
nis:<domainname>

The host name or IP address of the server <hostname> that is offering
the NIS service to a domain <domainname> must be defined, otherwise
the process may fail.

9. In the Password Service Name field, you may enter the name for the map
list that contains password information, in which the user name is the key.

10. In the Password Attribute Name field, enter the user password for this
established domain.

11. Continue to configure your bundle, then commit this change to the server.

Authenticating Windows users based on their login information

1. Select the bundle version’s Access node to reveal all of its access properties
in the right pane.

2. From the Client Authentication drop-down list, select the
ClientUsernamePassword class (whose full package is
com.sitraka.deploy.authentication.ClientUsernamePassword).

Since authentication is NIS-based, there is no need for end-users to
provide information themselves.

3. From the Authentication drop-down list, select the
(com.sitraka.deploy.authentication.) WindowsAuthentication class.

Selecting this Access Properties class means that the Windows
Authentication editor needs to be reviewed.

4. Click the Authorization/Authentication tab, then click the Authentication
child tab.

5. From the Authentication drop-down list, select the
(com.sitraka.deploy.authentication.) WindowsAuthentication class.

Selecting this editor reveals the current status of the configuration file
for Windows authentication. This server-side file points to a Windows
116 � Chapter 6

network domain, which acts as an authentication mechanism in
DeployDirector.

6. Verify or enter the name or value of the Windows domain, whose registry of
valid user login information is referenced when a user is being
authenticated (it is this registry to which a user’s provided name and
password will be compared).

7. Continue to configure your bundle, then commit this change to the server.

Setting Authorization Properties
As with authentication properties, you can set authorization properties in
DeployDirector’s Administration Tool by selecting the Access property node
for a bundle, where you can choose specific modules and corresponding editor
classes.

Important: When a bundle
is configured to use certain
default authorization
modules, the formatting
used for its version name
(e.g. 1.2.0) must conform
to certain constraints.
Please refer to
Authorization Behavior and
Allowable Bundle Version
Names in Chapter 9, for
more information.

When working with a new bundle or bundle version, selecting its Access
property node displays combo boxes for both authorization modules, as well as
the previously discussed authentication modules. Available authorization
classes include global and unconditional authorization, individual
authorization, group authorization, and hierarchical group authorization. For an
overview of these authorization modules and classes please see Authorization
Module and Editor Classes on page 157, and Group Authorization Module and
Editor Classes on page 158.
Configuring Bundle Runtime Properties � 117

In the module’s property field in the right pane, you can enter the full package
name of a custom class you have created, select a DeployDirector class from the
drop-down list:

Authorizing all authenticated users

1. Select the bundle version’s Access node to reveal all of its access properties
in the right pane.

2. Ensure you have selected the appropriate Client Authentication and
Authentication classes from their respective drop-down lists.

3. From the Authorization drop-down list, select the
(com.sitraka.deploy.authorization.) AuthorizeAll class.

4. Continue to configure your bundle, then commit this change to the server.

Authorizing authenticated users based on the contents of a server-side data file:

1. Select the bundle version’s Access node to reveal all of its access properties
in the right pane.

2. Ensure you have selected the appropriate Client Authentication and
Authentication classes from their respective drop-down lists.

3. From the Authorization drop-down list, select the
(com.sitraka.deploy.authorization.) DefaultAuthorization class.

After selecting this class, you may want to review the contents of the
server-side data file in the Default Authorization editor.

4. Click the Authorization/Authentication tab, then click the Bundle
Authorization child tab.
118 � Chapter 6

5. From the Authorization drop-down list, select the
(com.sitraka.deploy.authorization.) DefaultAuthorization class.

Selecting this class shows authorization associations based on the
server-side authorization data file, which is referenced by
DeployDirector during authorization. This view shows associations
between relevant bundles (i.e. those that use the DefaultAuthorization
class), users and groups, and bundle versions.

Important: The information
displayed in the list is
locally cached, thus is as
current as the last time you
refreshed it. It is important
to refresh lists when using
this editor.

Please refer to An
Emphasis On Server
Updating and Refreshing in
Chapter 9 for more
information.

The Alternate View displays the contents of the authorization data file.
Configuring Bundle Runtime Properties � 119

6. Click the Refresh button (or, File > Refresh) to ensure the list currently
reflects the contents of the server data file.

7. Review and if required, edit the users or groups that are authorized to use
the bundle version. Whenever you edit any fields, press the Enter key to
commit it.

You can learn more about authorizing users or groups to particular
bundles in End-User and Administrator Authentication Lists in Chapter
9.

8. Continue to configure your bundle, then commit these changes to the
server.

Authorizing groups of users based on a server-side data file

1. Select the bundle version’s Access node to reveal all of its access properties
in the right pane.

2. Ensure you have selected the appropriate Client Authentication and
Authentication classes from their respective drop-down lists.

3. From the Authorization drop-down list, select the
(com.sitraka.deploy.authorization.) DefaultGroupAuthorization class.

The selection of a group authorization class in this field (in this case,
DefaultGroupAuthorization) results in the enabling of the Auth
Groups drop-down list is enabled.

4. From the Auth Groups drop-down list, select the SimpleAuthGroups class.

After selecting these classes, you may want to review the contents of
your server-side data file with the Default Authorization editor.

5. Click the Authorization/Authentication tab, then click the Bundle
Authorization child tab.

6. From the Authorization drop-down list, select the
(com.sitraka.deploy.authorization.) DefaultGroupAuthorization class.

Selecting this class shows authorization associations based on the
server-side group authorization data file, which is referenced by
DeployDirector during group authorization. This view shows
associations between relevant bundles (i.e. those that use the
DefaultAuthorization class), groups and users, and bundle versions.
120 � Chapter 6

Important: The information
displayed in the list is
locally cached, thus is as
current as the last time you
refreshed it. It is important
to refresh lists when using
this editor.

Please refer to An
Emphasis On Server
Updating and Refreshing in
Chapter 9 for more
information.

The Alternate View displays the contents of the group authorization
data file.

7. Click the Refresh button (or, File > Refresh) to ensure the list currently
reflects the contents of the server data file.
Configuring Bundle Runtime Properties � 121

8. Review and if required, edit the groups or users that are authorized to use
the bundle version. If you edit any fields, press the Enter key to commit it.

You can learn more about authorizing users or groups to particular
bundles in End-User and Administrator Authentication Lists in Chapter
9.

9. Continue to configure your bundle, then commit these changes to the
server.

Authorizing groups of users against an NIS directory

1. Ensure the CLASSPATH includes NIS.jar and ProviderUtil.jar, or if
you are using the standalone server, ensure these JARs have been placed in
the deploydirector/lib directory.

Important: Using NIS
authentication in this
context requires the use of
two specialized JARs.
Please refer to Group
Authorization Module and
Editor Classes on page 158
for important information.

2. In the Administration Tool, select the bundle version’s Access node to
reveal all of its access properties in the right pane.

3. Ensure you have selected the appropriate Client Authentication and
Authentication classes from their respective drop-down lists.

4. From the Authorization drop-down list, select either the
(com.sitraka.deploy.authorization.) DefaultGroupAuthorization or
the HierarchicalGroupAuthorization class.

The selection of either group authorization class in this field (whichever
you have determined to be appropriate) results in the enabling of the
Auth Groups drop-down list is enabled.

5. From the Auth Groups drop-down list, select the
(com.sitraka.deploy.authentication.) NISAuthGroups class.

After choosing this NIS-related class, you may want to review the NIS
directory settings you have made.

6. Click the Authorization/Authentication tab, then click the User Groups
child tab.
122 � Chapter 6

7. From the Auth Groups drop-down list, select the
(com.sitraka.deploy.authentication.) NISAuthGroups class.

Selecting this editor reveals the current status of the configuration file
for NIS authentication. This server-side file points to the NIS naming
service, and the JNDI-based authentication mechanism in
DeployDirector.

8. In the Initial Context Factory field, verify or enter the name of the class
(with full package) that is used to select the NIS provider.

9. In the Naming Service URL text field, verify or enter the NIS server URL.
Valid formats include:

nis://<hostname>/<domainname>
nis:///<domainname>
nis:/<domainname>
nis:<domainname>

The host name or IP address of the server <hostname> that is offering
the NIS service to a domain <domainname> must be defined, otherwise
the process may fail.

10. In the first User Service Name field, you may enter the name for the map
list that contains group security information, in which group name is the
key.

11. In the first User Attribute Name field, enter member identification number
for the established domain.

12. In the second User Service Name field, you may enter the name for the
map list that contains password information, in which the user name is the
key.
Configuring Bundle Runtime Properties � 123

13. In the second User Attribute Name field, enter the group identification
number in the established domain.

Once the correct NIS information has been verified, you may want to
review the contents of your server-side data file with the Default
Authorization editor.

14. Click the Bundle Authorization child tab.

15. From the Authorization drop-down list, select the
(com.sitraka.deploy.authorization.) DefaultGroupAuthorization class.

Selecting this class shows the status of the server-side group
authorization data file, which is referenced by DeployDirector during
group authorization. This view shows associations between relevant
bundles (i.e. those that use the DefaultAuthorization class), groups
and users, and bundle versions.
124 � Chapter 6

The Alternate View displays the contents of the group authorization
data file.

16. Review and if required, edit the groups or users that are authorized to use
the bundle version.

You can learn more about authorizing users or groups to particular
bundles in End-User and Administrator Authentication Lists in Chapter
9.

17. Continue to configure your bundle, then commit these changes to the
server.
Configuring Bundle Runtime Properties � 125

An Overview of Security in DeployDirector
DeployDirector ensures the security of data during transmission, as well as the
integrity of transmitted data. Transmission security is implemented through
Netscape’s SSL (Secure Sockets Layer), while data validation is based on an
MD5 hash code. SSL implementation is flexible, in that you can choose from
many third party SSL solutions or customize your own. This flexibility,
combined with the robustness of these encryption schemes, ensures secure data
transmission with DeployDirector.

About SSL and Symmetric Encryption
SSL: The SSL (Secure Sockets Layer) protocol is commonly used for secure
client-server communication on the Internet, and ensures privacy when SSL-
compliant machines communicate with each other. This encryption method
uses a public and symmetric key: when clients and servers send data to each
other, encryption is performed based on an encryption scheme provided by a
public key (i.e. the public key is used to securely exchange a symmetric key).

If a client is sending data to a server, when a client establishes a connection, the
server sends its public key back to the client. The public key is used by the
client to encrypt data, which is then sent back to the server. The server then
decrypts this data with its complimentary private key (which the server never
sends to a client).

Symmetric encryption: The use of a single, common key in a key exchange
between client and server is the first step in symmetric encryption. This
encryption method involves the use of one secret key, which is used for
encrypting and decrypting. During a transaction between client and server, the
secret key is sent to the recipient of encrypted data. This encryption method is
less secure with Internet transactions, where many users are anonymous. If any
party acquires a copy of the secret key, all transmissions can be decrypted.
However, encrypting data with a symmetric encryption method is significantly
faster (up to ten times faster on the same data) than SSL encryption.

DeployDirector achieves a balance between client-server security and
encryption speed by combining these two encryption approaches. The result is
a secure and fast bundle transmission.

How Encryption Is Implemented in DeployDirector
DeployDirector uses public key encryption, authenticated with certificates, to
encrypt a secret symmetric encryption key.
126 � Chapter 6

When a server receives a request from a client, it sends a public key to that
client. The client uses the public key to encrypt a randomly generated
symmetric encryption key, then (securely) sends this back to the server. Once
this secret key has been sent back to the server, the server uses this secret key to
encrypt the actual data, which is sent to the client.

Nesting symmetric encryption in a public key maximizes both security and
speed. Since the secret key takes less time than a public key to encrypt data, it is
used to encrypt the actual data. The public key, being more suitable for Internet
transmissions, is used to transfer the secret key.

When a server is running in SSL mode, it can only communicate through the
SSL protocol. Thus, an SSL connection can only occur between an SSL-
enabled client and SSL-enabled server.

SSL Support with DeployDirector
DeployDirector does not have built-in SSL support; instead, the use of SSL in
both the CAM and SAM is facilitated by an interface into which you can plug a
customized SSL implementation, or an implementation from a third party
library. DeployDirector uses or allows the use of SSL. As such, it includes a
support code for SSL implementation. Some default support code for some
more common third party libraries are also included. Implementing SSL
support is covered in the next section of this chapter.

DeployDirector’s open SSL interface offers more flexibility over built-in SSL
support. Each organization’s choice of which SSL implementation to use
addresses two concerns.

The export of the encryption technology required by SSL is controlled by most
governments. If SSL encryption technology was included in DeployDirector, a
government export permit would most likely be required. Consequently, in
order to comply with export regulations, a reduction in the key length of the
encryption could be the result. Conversely, there exist countries that control the
import of encryption technology.

Every organization’s deployment situation is unique, and there exist some
organizations for whom security is extremely important. Having an open SSL
interface allows an organization to use a custom encryption scheme that
addresses its specific security needs, or allows the use of a trusted third party
library.
Configuring Bundle Runtime Properties � 127

SSL Notes and Encryption Resources
While a reduced key length could result in reduced security, this may not pose
any critical problems, unless your organization’s data transfers require stringent
security (e.g. online financial transactions). Currently, most export restrictions
focus on the length of the key used to encrypt and decrypt each transmission.
While transmissions encrypted with shorter keys are easier to crack by a
socially retarded, but technically skilled eavesdropper, “easier” is a relative
term. To illustrate this point, the RSA Labs FAQ (http://
www.rsasecurity.com/rsalabs/faq/) states:

While exhaustive search of DES’s 56-bit key space would take
hundreds of years on the fastest general purpose computer available
today, the growth of the Internet has made it possible to utilize
thousands of such machines in a distributed search by partitioning the
key space and distributing small portions to each of a large number of
computers. Recently, a group called distributed.net solved RSA’s DES
Challenge II, using an estimated 50,000 processors to search 85% of the
possible keys, in 39 days.

56-bit DES encryption is now considered exportable from the United States
and Canada. Whether or not this level of risk is acceptable is something each
customer must decide for themselves.

As a counterpoint, also from the RSA Labs FAQ:

Absent a major breakthrough in quantum computing (see Question
7.17), it is unlikely that 128-bit keys, such as those used in IDEA (see
Question 3.6.7) or RC5-32/12/16 (see Question 3.6.4), will be broken
by exhaustive search in the foreseeable future.

128-bit RC5 and IDEA encryption is not currently exportable from the United
States without approval of the US Bureau of Export Administration (http://
www.bxa.doc.gov/).

Aside from RSA Lab’s introduction to cryptography, “Frequently Asked
Questions about Today's Cryptography”, available at http://
www.rsasecurity.com/rsalabs/faq/, there are other sites that can help if you
need to get better acquainted with some of the encryption technology used in
DeployDirector.

You will find an introduction to SSL encryption at http://
developer.netscape.com/docs/manuals/security/sslin/contents.htm.

A more general SSL technical manual area exists at http://
developer.netscape.com/docs/manuals/

index.html?content=security.html.

Additionally, you can also refer an SSL discussion FAQ at http://
www.faqs.org/faqs/computer-security/ssl-talk-faq/.
128 � Chapter 6

In late 1999, SSL version 3.0 was renamed to TLS (Transport Layer Security)
version 1.0, as the standard is now under the control of the IETF (Internet
Engineering Task Force). The proposed TLS 1.0 standard can be found at ftp:/
/ftp.isi.edu/in-notes/frc2246.txt.

DeployDirector’s SSL Components

SSLFactory Method
The ability to plug in a third party of customized SSL implementation centers
around DeployDirector’s com.sitraka.deploy.SSLFactory interface.
Implementing this interface with a class that bridges an SSL library with DD
enables SSL encryption.

The class you use depends on the SSL library you use. DeployDirector includes
several support classes for some more common third party SSL libraries.

Default SSL Implementations
The included SSL support classes that implement
com.sitraka.deploy.SSLFactory support specific SSL extensions or libraries.
These classes are located in com.sitraka.deploy.ssl.

If you are not using one of these, for all intents and purposes, you are using a
customized one. More information about these are in the next section.

Class Name and Distributor Where it can be obtained

JSSE.java JSSE Java Secure Sockets
Extensions
Sun Microsystems

From Sun Microsystem’s
Javasoft Web site: http://
java.sun.com/products/jsse/

IAIK.java iSaSiLk SSL package
IAIK or Entrust

From the IAIK-Java Group
web site: http://
jcewww.iaik.tu-graz.ac.at.

SSLJ.java SSL-J
RSA

RSA Security Web site: http://
www.rsasecurity.com/
products.bsafe/sslj.html.
Configuring Bundle Runtime Properties � 129

Proxies, Socks and Firewalls
When DeployDirector attempts to establish a connection for bundle
deployment, it creates the raw connection itself. In doing so, an SSL handshake
is invoked only after the connection procedure goes through SOCKS or http
proxies. (Any application which needs to communicate through a proxy has to
negotiate with the proxy first before continuing through the firewall.)

Since DeployDirector creates the connection, the SSL implementation must
have a constructor that can accept an established socket. In light of this, three
possibilities exist:

� The SSL implementation’s constructor can accept an established socket: No
extra steps need to be taken.

� Use the startSSLHandshake() method: If the SSL package does not accept
an established socket, you can use this method to manually initiate the
handshake process

� Use another or modify your SSL package: If the SSL package being used
does not accept an established socket, and does not allow you to use the
startSSLHandshake() method, the deployment connection will not be able
to go through proxies.

Setting DD Encryption
The two pieces required are an SSL package, and the class that bridges that
package with DeployDirector. The bridging class must:

� implement the com.sitraka.deploy.SSLFactory

� provide a no argument constructor

� be available in the CLASSPATH of component that requires it.

For the server/servlet (SAM) this means that the SSL and related
support classes must either be added to the ddsam.jar file or to the
CLASSPATH of the servlet engine.

For the client (CAM), the support classes must either be added to the
ddcam.jar file or listed as part of your application's files and be added
to the CLASSPATH object in the XML for each version of the
application. If the SSL library requires native code libraries, then you
will have to ensure that these are available as well. Keep in mind that
native code is only supported in client applications under JDK 1.2. If
JDK 1.1 is used, you must put the native code in the CAM JAR.
130 � Chapter 6

If Your SSL Library Is Not Supported
Your first step is to implement the com.sitraka.deploy.SSLFactory interface.
Details on the implementation of this interface can be found in the Javadoc for
that class. You will then need to add this class to the 3rd party library's JAR file.
Example implementations can be found in the SDK along with the
corresponding source code. Your SSL library can now be supported by
DeployDirector.

If Your SSL Library Is Supported
If your SSL library is one of those listed under the 'Default Implementations',
then you only need to ensure that the required classes and JAR files are
available for the client or the server, and provide the class name of the
implementing class.

For the client, add the libraries with the CAM. This is done by creating a new
version of the CAM bundle that includes the SSL libraries. Make sure that you
add the SSL jar files to the CLASSPATH object of the CAM bundle. Then you
will have to provide the name of the implementing class. This is done on a per
application basis by setting adding a SYSTEMPROP entry as follows:

deploy.http.sslsocketfactory = <desired SSL class>

For the server, either combine the ddsam.jar with the 3rd party libraries or add
the 3rd party libraries to the CLASSPATH of the server. Then set the property
deploy.http.sslsocketfactory in server.properties to the name of the
class implementing the com.sitraka.deploy.SSLFactory interface.

Indicating which SSL security class to use with DeployDirector

1. In the Remote Administrator, navigate to the Server: Server Configuration:
Miscellaneous Properties page.

2. In the deploy.http.sslsocketfactory field, enter the name of the class that
implements the com.sitraka.deploy.SSLFactory interface, using the full
package.

3. In the deploy.http.timeout field, enter the value that represents the time the
client machine will wait for a server connection to be established before the
connection is considered to have failed. (Please refer to Administration Tool
Date and Time Entry Formats in Chapter 2, Introduction.)

4. Click Update Configuration to update the server to which you are
connected with this change.
Configuring Bundle Runtime Properties � 131

Overview of Data Validation
Since data integrity is vulnerable to both tampering as well as transmission
errors, validity is ensured through the use of an MD5 hash code. The source of
this binary code is the entire deployment bundle. This code, which is then
converted to a string, is created at both ends of the deployment chain: the SAM
creates it and attaches it to the bundle that is deployed; after receiving the
bundle, the CAM also creates a code based on the bundle it received. This new
code is compared to the one attached to the original bundle. A match offers
reassurance that what was received is identical to what was deployed.

DeployDirector’s security component consists of an interface with which any
customized, or third party SSL implementation can be used. This offers the
most flexibility for organizations, since security needs are often dependent on
the scope of the deployment, as well as the type of data being transmitted. SSL
support code is provided for some common third party libraries.
132 � Chapter 6

 Chapter 7
Configuring Bundle Update Policies

pplication updates can be deployed as new bundle versions.
DeployDirector can handle updates in a conventional way by pushing
out new versions to users. Alternatively, more control can also be

given to the client-side, allowing end users to initiate updates.

The Client-Side Update Process
Whenever a CAM connects to a server (whether that connection is initiated by
the user or is automatically established), the CAM asks the server to see if an
update can take place.

When a new bundle version is available in the vault, the conditions under
which a client machine’s CAM retrieves and installs that bundle version can
vary. While it may be typical that end users always work with the most recent
bundle version (and have little choice in this matter), this does not have to be
the case. Bundles can be configured to give end users more control over when
they upgrade to a new version and when they connect to the server to
determine if new versions exist.

As was previously mentioned, a CAM determines how bundle updates for a
client machine are handled by reading specific properties of the bundle
currently in use, and those of newer versions detected on the server. (The CAM
asks the server for the update policy of the newer version. The policies that
affect CAM update actions are Connection and Update.

A

133

Valid Connection Policy Settings
In the Administration Tool, selecting a bundle’s Connection node reveals its
connection policy:

Connect To Server indicates when the running bundle should attempt to
connect to the deployment server. The Connection to Server Is setting indicates
whether or not a connection to the server is required for the bundle to start up,
or continue running. These settings, supported by Schedule settings if needed,
constitute your bundle’s connection policy.

The following outlines which Connection property settings are meant to work
with others.

Setting Bundle Connection Policies
Setting these properties determines when the client machine connects to the
server, and if the user has control over when their machine connects to the
server. This is important, since a connection to the server is required in order
for the CAM to determine (by asking the SAM) whether newer versions exist.

Connection policy can be set for bundle versions in the Administration Tool.

Setting automatic mandatory client connections to a server on startup

1. Select the bundle version’s Connection node to reveal its policy editor in
the right pane.

2. From the Connect to Server drop-down list, select On Startup.

3. From the Connection to Server drop-down list, select Required.

Connect to Server Connection to Server Is
Schedule Information
Required?

On Startup Required / Preferred no

Scheduled Required / Preferred yes

User Initiated Preferred no
134 � Chapter 7

4. Continue to configure your bundle, or commit these changes to the server.

Scheduling client connections to a server

1. Select the bundle version’s Connection node to reveal its policy editor in
the right pane.

2. From the Connect to Server combo box, select Scheduled.

3. From the Connection to Server combo box, select Required.

4. Click the combo box arrow in the Schedule Start Date field to reveal the
calendar popup.

5. From the calendar popup, select the time and date on which you would like
the first scheduled client connection to the server to occur.

Clicking a day on the calendar completes the selection process. The
chosen schedule information is displayed in the Schedule Start Date
field.

6. For the Interval property (specifically, the Days, Hours and Minutes spin
boxes), indicate how often this scheduled connection will be re-established
in the future.

7. Continue to configure other properties for your bundle version, or commit
these changes to the server.

Giving the user control over server connections

1. Select the bundle version’s Connection node to reveal its policy editor in
the right pane.

2. From the Connect to Server combo box, select User Initiated.

3. From the Connection to Server combo box, select Preferred.

4. Continue to configure other bundle properties, or commit these changes to
the server.

Setting Bundle Update Policies
A bundle’s Update node, when selected in the Administration Tool, also reveals
its own policy editor:
Configuring Bundle Update Policies � 135

When a CAM connects to a server, and determines that a newer bundle version
exists, the Update policy set on this newer version determines whether or not
an update actually occurs, or will occur in the future.

An update policy can be set for bundle versions in the Administration Tool.

Making a bundle version a mandatory update

1. Select the bundle version’s Update node to reveal its policy editor in the
right pane.

2. From the Policy combo box, select either Mandatory or Scheduled
Mandatory.

3. If you selected Scheduled Mandatory in the last step, click the combo box
arrow in the Schedule field to reveal the calendar popup.

4. In the calendar popup, select the time and date on which you would like the
bundle version to become a mandatory update.

Clicking a day on the calendar completes the selection process. The
chosen schedule information is displayed in the Schedule field.

5. Continue to configure other bundle properties, or commit these changes to
the server.

Making a bundle version an optional update

1. Select the bundle version’s Update node to reveal its policy editor in the
right pane.

2. From the Policy combo box, select Optional.

3. Continue to configure other bundle properties, or commit these changes to
the server.

The Connection and Update Options from the User’s
Perspective

When the end user runs a deployed application, and the CAM detects a newer
version on the server, the feedback the user receives depends on how update
policy has been defined.
136 � Chapter 7

Connecting to the server, if scheduled or performed whenever the application is
started, is transparent to the user. However, upon connection, when the CAM
detects a newer bundle version, that bundle’s Update properties will result in
the user being presented with a number of choices. The following table outlines
the different update queries that are presented to end users, and the outcomes
of their choices.

Examined separately, a bundle’s Connection and Update policies seem pretty
unspectacular. However, it is the combined effect of these policies, across
multiple bundle versions, that requires careful consideration. The next three
sections illustrate some of the effects of these properties.

Bundle Update Policy User Options Result

Mandatory update now new bundle installs

do not update application terminates

Optional update now new bundle installs

update in the
background

new bundle brought down in
the background; user
prompted to update once all
files present and application
has been exited

update later does not install, currently
installed application starts

don’t ask me again does not install; currently
installed application starts;
end user is not prompted
again until the CAM detects
the next version of the bundle
is present in the vault and the
end user starts up the
application

Scheduled Mandatory
(before date)

update now installs in the foreground

update in the
background

new bundle installs in the
background

update later new bundle is not installed,
currently installed application
starts

Scheduled Mandatory
(on or after date)

update now new bundle installs

do not update application terminates
Configuring Bundle Update Policies � 137

CAM Update Example: Dependencies Between Bundle
Versions
As a general rule, when one is using a bundle and newer bundle versions exist,
it is the current bundle’s policy that determine how the connection to the server occurs,
and it is the latest bundle’s policy that determine how updates are handled.

As such, when setting update policy for a new bundle version that the end user
does not yet have, it is important to make sure you are aware of the Connection
policy of the bundle with which the user is currently working. Conversely,
when setting connection policies on a bundle version, it should fit into the
overall update policy that you will implement for all future bundle versions.
The following example illustrates this concept.

Latest available version: 1.0
Version currently in use: 1.0

Latest available version: 2.0
Version currently used: 2.0

Latest available version: 3.0
Version currently used: 2.0

Latest available version: 4.0
Version currently used: 2.0

requests new
application bundle

runs application and
automatically connects

runs application and
opts to not connect

connects but
declines update

retrieves and
installs new bundle

detects and retrieves
new bundle

does not detect
new bundle

detects but does not
retrieve new bundle

Connection to server is automatic,
as set in version 1.0.

Installation of latest bundle (3.0) is
mandatory, but connection to server
is optional, as set in version 2.0.

Connection to server initiated by
user (set in version 2.0). Latest
bundle (4.0) lets user decline the
installation.
138 � Chapter 7

CAM Update Example: Effects of the Connection Policy
If your organization’s deployment policy (whether written or unwritten)
requires end users to work with the latest available bundles, it is important that
their client machine establishes a connection with the server as often as you
require.

A client machine can connect every time its user runs the deployed application,
or to minimize network traffic their machine can connect at set intervals. This
depends entirely on how the current bundle’s Connection policy has been set.
If your end users are not required to always work with the latest available
bundle version, the choice to connect to the server can be given to the user.

It is important to be aware of the effects of a bundle’s Connection properties.
The following example illustrates the result of a more liberal bundle connection
policy, when combined with the (in)actions of a jaunty end user.

Latest available version: 1.0
Version currently in use: 1.0

Latest available version: 2.0
Version currently used: 1.0

Latest available version: 3.0
Version currently used: 1.0
Installation of latest bundle (3.0) is
mandatory, but connection to server
is optional, as set in version 1.0.

requests new
application bundle

runs application and
opts to not connect

runs application and
opts to not connect

runs application and
manually connects

retrieves and
installs new bundle

does not detect
new bundle

does not detect
new bundle

detects and retrieves
new bundle

Installation of latest bundle (2.0) is
mandatory, but connection to server
is optional, as set in version 1.0.

Latest available version: 4.0
Version currently used: 4.0
Connection to server initiated by
user (set in version 1.0). Latest
bundle (4.0) is mandatory. Versions
2.0 and 3.0 are skipped.
Configuring Bundle Update Policies � 139

CAM Update Example: Effects of the Update Policy
Similar to the previous example, if your organization’s deployment policy
requires that end users work with the latest available bundles, it is important
that bundle Update policy are properly set.

When a client machine connects to a server, and new bundles are detected by
the CAM, the new bundle’s update policy can be set as mandatory, mandatory
by a specified date, or optional. It is important to be aware of the effects of these
choices, and the following example illustrates the result of a mixed update
policy across multiple bundle versions.

Latest available version: 1.0
Version currently in use: 1.0

Latest available version: 2.0
Version currently used: 1.0

Latest available version: 3.0
Version currently used: 1.0
Connection to server is automatic (set
in version 1.0). Latest bundle must be
installed within a month, but the user
can delay its installation until then.

requests new
application bundle

runs application and
automatically connects

runs application and
automatically connects

runs application
before a month has

passed and
automatically connects

retrieves and
installs new bundle

detects but does not
retrieve new bundle

detects but does not
retrieve new bundle yet

detects and installs
newest bundle;

ignores previous
scheduled installation

Update policy for latest bundle (2.0)
is optional. User does not retrieve it.

Latest available version: 4.0
Version currently used: 4.0
Connection to server is automatic.
Latest bundle (4.0) requires installation.
Thus, mandatory update to version 3.0
is skipped.
140 � Chapter 7

 Chapter 8
Preparing Bundles and Servers for
Deployment

nce your bundle has been fully configured, you need to prepare it for
deployment. This means adding the new bundle or bundle version to
your server’s vault, and possibly transferring it to other servers for

deployment. If the bundle is particularly large, you can create an installation
CD for a manual installation on client machines (followed by deployed updates
in the future).

Committing a Bundle to the Vault
Bundles that have been completely configured need to be uploaded to the
vault. In the Administration Tool, clicking File > Update Server sends all
uncommitted bundle versions to the server to which the Tool is connected. You
can either connect and upload bundles to a production server that is part of a
cluster (where it will be replicated to all others in the cluster), or to a server
from which you can manually send the bundles to a transfer group.

Once a bundle has been committed (i.e. it has been uploaded to the server), it
can then be deployed by that server and any other servers that are part of its
cluster.

Please refer to Making Changes to the Vault in Chapter 4, Adding Bundles and
Defining Bundle Content for information on other vault-related actions in the
Administration Tool.

O

141

Preparing Bundles for Manual CD Installations
There are two ways of installing an application on the client side: from a CD-
ROM or via Web browser. Both methods offer certain advantages. Installation
of applications via a Web browser simplifies the process on the client side. It
removes the need for a manual installation which can be time consuming and
tiresome, especially if there is a large number of clients. Typically,
administrators upload new bundles to a deployment server, and the client-side
users then download it across your network. (Information on configuring
bundles for installation from a Web browser can be found in Chapter 5,
Configuring Bundle Installation Properties.)

If an application is large (resulting in a large bundle) or there are concerns
regarding the availability of bandwidth, your organization may prefer to
initially install the application on the client side via CD. After this initial manual
step, the bundles are then managed remotely by DeployDirector and the end
users receive updated bundle versions from the server across the network.
DeployDirector provides class-level differencing during application updating
which mitigates any subsequent concerns about the availability of bandwidth.

This installation option offers more flexibility to your organization as well as to
Independent Software Vendors (ISVs), who can package their application with
DeployDirector. The end user would simply insert the CD, and choose the
applications to be installed from a list of options presented in a DeployDirector
Installer window. Later, such applications can be easily maintained and
updated by the network administrator using DeployDirector.

An Overview of DARs
The Deploy Archive (DAR) file format is analogous to the JAR format. It has
been created to encapsulate bundles for transport. This format preserves the file
names, directory information, and file attributes of all files contained in a
bundle. DARs can be generated to simplify the transfer of bundles from a
development server to a production server, or between two servers that are not
part of the same cluster.

DARs are used to package bundles that will be installed on the client side from
a CD and later managed by DeployDirector. First, the bundles to be distributed
to the client desktops are encapsulated within DARs using the Administration
Tool or the DAR tool. Second, the DARs are placed in the vault directory on
the CD. Though the initial installation on the client side is manual, the bundles
are later managed automatically using DeployDirector.

The DARs should be named to adhere to the ISO9660 convention (at most,
eight characters long, followed by a file extension of maximum three
characters) to support the CD installation option described above.
142 � Chapter 8

The structure of the DARs follows the example of the JAR format: the bundle
files and a META-INF subdirectory. The files describing the bundle, like
version.xml and bundlename.txt, are stored in the META-INF directory
within the archive.

DARs can be easily created in the Administration Tool by selecting the bundle
version you wish to export, then clicking File > Export Bundle. The
Administration Tool accommodates DAR import and export, easily allowing
you to prepare bundles for transport on installation CDs. (Alternatively, DARs
can also be exported in the Remote Administrator, on the Bundle: Export DAR
page.)

DeployDirector also includes command line DAR tools that have a much richer
feature set, and can also work with WAR files. The presence of the DAR
command line tool facilitates automated bundle packaging and distribution
through scripts, as well as WAR and DAR conversion. Please see Using the
DAR Command Line Tool found later in this chapter for extensive information
about the tool’s commands and options.

Setting Up an Installation CD
The easiest way to create an installation CD is to use the CD Creation Wizard.
This can be accessed by clicking Edit > CD Wizard in the Administration Tool.

Using the Wizard, you are walked through the essential steps needed to create a
CD-based installation. However, you can maintain greater control by
performing this process manually.

The following procedures outline the process of packaging your applications
with DeployDirector to create an installation CD. This process includes
exporting your bundles as DARs, moving necessary DeployDirector files over
to the CD burn area, and burning the CD.
Preparing Bundles and Servers for Deployment � 143

Saving bundles and the CAM as DARs

1. Ensure that the bundles you wish to put on an installation CD have been
configured properly, and have been uploaded to the server.

Important: If a higher
bundle version exists that
is configured as a
mandatory update, the CD-
installed bundle will update
as soon as it is run.

2. In the Administration Tool, select the bundle version you want to put on an
installation CD.

3. Click File > Export Bundle.

As an alternative, you can create a DAR using the command line tool
included in the Administration Tool distribution (DDAdmin) in the
<installpath>/deploydirector/DDAdmin/bin directory.

4. In the Save dialog box, navigate to the directory where you are assembling
files to be burned onto CD.

5. Enter the name of the DAR, followed by the .dar extension, and click
Save.

You have now created and saved the DAR for the version of the bundle
which is destined for the installation CD.

Similarly, create a DAR file for each bundle that is going to be
distributed to the client desktops.

6. Select the current version of the DDCAM bundle.

7. Create a DAR of the DDCAM by clicking File > Export Bundle.

8. In the Save dialog box, navigate to the directory where the DARs were
saved from previous steps, and save the DDCAM as ddcam.dar.

Assembling the necessary DeployDirector and DARs

1. When you first deployed the Administration Tool to your workstation, the
following directory structure was installed:

This entire cdimage directory must be copied to the CD-ROM, as
described in the next step.
144 � Chapter 8

2. Set up the following directory structure for your CD-ROM.

target directory
|--setup.exe
|--autorun.inf
|--dd.ico
|--lib
| |--cdsetup.jar
|--install
|
|--jres
| |--unix
| |--i386
| |--linux
| |--{manufacturer}
| |--unix
| |--sparc
| |--solaris
| |--{manufacturer}
| |--windows
| |--i386
| |--sun
| |--bin
| |--lib
|
|--deploydirector
| |--jres
| |--vault
| |--cluster.properties
| |--platform.xml
| |--server.properties

3. Remove all files and folders from the /vault subdirectory.

4. Copy all of the DARs into the /vault directory.

The vault directory should contain ddcam.dar as well as all the DARs
you created in the previous procedure.

5. Copy the contents of the /jres directory to the /deploydirector/jres
directory.

6. If you are targeting a Windows platform, ensure that you include the
unarchived contents (including the /lib and /bin subdirectories and
contents) of a Sun JRE 1.3 or greater. (To test whether the Windows jres
directory has been set up properly, verify that the following command can
be executed:
[target directory]/jres/windows/i386/sun/bin/javaw.exe

These files are copied over
from the Administration
Tool’s cdimage directory.

The contents of the jres
directory is dependent on
your client machines. JREs
can be included for the
Windows, Linux, and Solaris
platforms.

Please see Step 5 for more
information about adding
JREs to your installation CD.

The deploydirector
directory and /jres and
/vault subdirectories should
be copied from the server
after the bundles have been
configured and the changes
committed to the server.
Preparing Bundles and Servers for Deployment � 145

A ZIP file containing Sun’s JRE 1.3 is provided in the DeployDirector
distribution under <installpath>/DeployDirector/jres/windows/
i386/sun/1.3.0/prebuilt.zip. For convenience, you can extract this
prebuilt.zip file into the jres directory.

If you are including JREs for Unix clients, ensure that all file names
under the /jres subdirectory do not contain periods. Replace all
periods with underscores (e.g. /sun/1.2.2 becomes /sun/1_2_2).

If you wish to reduce the number of files that are burnt onto a CD, you
can safely delete any JREs not required on the client side from the
[target directory]/deploydirector/jres directory. The JREs
should also be removed from the platform.xml file.

Including customized install event classes

If you are using a customized install event class for a bundle, it will already have
been included in your DDCAM bundle. (Please refer to the section entitled
Extending Installation Options with Custom Classes for more information
about including these classes to the DDCAM bundle.)

For a DeployDirector CD installation, you will also have to include this class in
the cdsetup.jar archive, which was copied over to a temporary area in a
previous procedure.

1. Locate the cdsetup.jar in the cdinstaller/cdimage/lib directory.

2. Add the install event class to this archive.

Writing the image to a CD

1. You can test the CD Installer on your local drive before burning the
directory structure to a CD-ROM. For the Windows platform, run the
setup.exe file. For Unix platform, run the install script.

2. When configuring the settings for burning the CD, please ensure that you
select ‘File System: ISO9660’ in the CD Layout Property dialog box. The
burner will prompt you to rename all files containing two dots in the file
name, such as font.properties.*. In order to ensure a smooth CD-
burning session, please rename these files so that there is no more than one
dot in the file name. In addition, make sure that the file name support
option is set to ‘long file names (maximum 30 characters)’. The CD-ROM
should be burnt in one session, at the write speed of 1x (150 KB/sec).
146 � Chapter 8

Installing an Application from a CD-ROM
1. Insert the CD into the CD-ROM drive.

2. Choose from the following options:

� For Windows: If the auto-run feature does not initiate the installation
process automatically, choose Start > Run. Browse to the directory
containing the setup.exe file on your CD. Choose the setup.exe file.
Click OK in the Run dialog box to begin the installation

� For Unix: invoke the install script to begin the installation. Ensure
that JDK 1.2.2 or above is already installed on the client machine.

Note: In order to mount a CD in HP-UX, you will have to enter the
following commands:
su (This will put you in the “super user” mode. You will need to supply
the root password.)
mkdir /cdrom (You probably want to add this directory at the root of
the file system.)
mount -F cdfs -o cdcase /dev/dsk/cdrom_device /cdrom (where
cdrom_device is listed in the output of the ioscan -f -n command)

To unmount the CD, you will need to enter the following command:
umount /cdrom (where /cdrom is the location where you mounted the
CD).

3. Follow the on-screen instructions.

If you are simultaneously installing several applications, you will be
presented with a list of all available bundles archived in the DAR.

You can select multiple applications from this list. The DeployDirector
Installer will guide you through the installation process.
Preparing Bundles and Servers for Deployment � 147

Using the DAR Command Line Tool
The DAR command line tool automates the process of generating DARs. The
tool (dar.jar and dar.bat) can be found in the <installpath>/
deploydirector/DDAdmin/bin directory within the DeployDirector
Administration Tool distribution.

The use of the tool begins with the dar command, and follows this template:

dar <command> <options>

The tool augments the basic DAR import and export commands available in
the Administration Tool, and also allows you to convert WARs to DARs, as well
as create DARs from local files (i.e. without first creating bundles).

dar convert: conversion of a WAR file to a DAR file
The dar convert command is used to convert a WAR into a DAR, and uses the
following options:

Option Purpose:

-d <dar name>
OR
--dar <dar name>

Assigns a name to the DAR. If this option is not used,
and the --bundle option is used, a
<bundlename>.dar file is created. Otherwise, the
base name of the WAR (i.e. the name without the
.war extension) is used.

-w <source war>
OR
--war <source war>

Specifies the WAR that will be converted into a DAR.
If this option is not specified, the tool will search in
the current working directory for a WAR. If one is not
found, the tool will terminate and report an error.

-b <bundle name>
OR
--bundle <bundle name>

Specifies the name of the bundle to be written into
the DAR. If this option is not specified, the default
bundle name is the base name of the WAR being
converted. This argument is mandatory if the WAR is
being read from standard input.

-v <version name>
OR
--version <version name>

Assigns a version name to the converted archive. If
this option is not specified, the default version name
is used (1.0.0).

-x <template XML>
OR
--xml <template XML>

Provides a path to a template version.xml file that is
meant to be read and processed. This file can provide
settings for standard DeployDirector bundle
properties such as UpdatePolicy and Connection. If
this option is not specified, the standard bundle
property settings are used.
148 � Chapter 8

dar import: importing a WAR or DAR file to the server
The dar import command will take a specified DAR or WAR and upload it to
a particular server, thus converting it into a DeployDirector bundle. The
command uses the following options:

Option Purpose:

-d <dar name>
OR
--dar <dar name>

Indicates the name of the DAR to be imported or
uploaded to the vault. Specifying a hyphen as an
argument instead of a DAR name (i.e. “-d -”) results
in the DAR being read from System.in.

Only one of -d and -w can be used.

-w <war name>
OR
--war <war name>

Indicates the name of the WAR to be imported or
uploaded to the vault. Specifying a hyphen as an
argument instead of a DAR name (i.e. “-w -”) results
in the WAR being read from System.in.

Only one of -d and -w can be used.

-b <bundle name>
OR
--bundle <bundle name>

Specifies a bundle name for the WAR or DAR when it
is sent to the server.

This option is mandatory if a WAR is being imported,
and read from standard input.

-v <version name>
OR
--version <version name>

Assigns a bundle version name to the imported WAR
or DAR. If this information is not available (e.g. the
bundle is being read from a WAR) the default version
name is used (1.0.0).

-p <server password>
OR
--password <server password>

Specifies the administrator password to access the
server.

This option is mandatory.

-U <admin name>
OR
--user <admin name>

Specifies the administrator user name to access the
server. If no name is provided, the default (ddadmin)
is used.

-u <server URL>
OR
--url <server URL>

Specifies the URL at which the server can be found.
This option should include the full access path to the
server, including the root path of the servlet (e.g.
http://foo.bar.com:8080/servlet/deploy).

This option is mandatory.
Preparing Bundles and Servers for Deployment � 149

dar export: exporting a bundle from the server as a DAR
The dar export command will take a specified bundle and convert it to a
DAR. The command uses the following options:

-x <template XML>
OR
--xml <template XML>

Provides a path to a template version.xml file that is
meant to be read and processed. This file can provide
settings for standard DeployDirector bundle
properties such as UpdatePolicy and Connection. If
this option is not specified, the standard bundle
property settings are used.

Option Purpose:

-d <dar name>
OR
--dar <dar name>

Indicates the DAR name that will be used with the
downloaded bundle. If this option is not used, the
bundle name will be assigned to the DAR.

Output can be sent to System.out if a hyphen is used
as an argument (i.e. “-d -”).

-b <bundle name>
OR
--bundle <bundle name>

Specifies the name of the bundle whose version is to
be retrieved from the server.

This option is mandatory.

-v <version name>
OR
--version <version name>

Specifies which version of the bundle is to be
retrieved from the server. If a version is not specified,
the latest bundle version is selected.

-p <server password>
OR
--password <server password>

Specifies the administrator password (default is
f3nd3r) to access the server.

This option is mandatory.

-U <admin name>
OR
--user <admin name>

Specifies the administrator user name to access the
server. If no name is provided, the default (ddadmin)
is used.

-u <server URL>
OR
--url <server URL>

Specifies the URL at which the server can be found.
This option should include the full access path to the
server, including the root path of the servlet (e.g.
http://foo.bar.com:8080/servlet/deploy).

This option is mandatory.

Option Purpose:
150 � Chapter 8

dar create: creating a DAR
The dar create command locally creates a DAR based on the settings and files
specified in the command options, as well as the bundle settings outlined in the
version.xml file. The command uses the following options:

Option Purpose:

-d <dar name>
OR
--dar <dar name>

Indicates the name given to the newly created DAR
name that will be used with the created bundle. If this
option is not used, the bundle name will be assigned
to the DAR.

Output can be sent to System.out if a hyphen is used
as an argument (i.e. “-d -”).

-b <bundle name>
OR
--bundle <bundle name>

Specifies the name of the bundle for which the DAR
will be created.

This option is mandatory.

-v <version name>
OR
--version <version name>

Specifies the version name of the newly created DAR.
If this option is not provided, the default version
name will be used (1.0.0).

-x <template XML>
OR
--xml <template XML>

Provides a path to a template version.xml file that is
meant to be read and processed. This file can provide
settings for standard DeployDirector bundle
properties such as UpdatePolicy and Connection. If
this option is not specified, the standard bundle
property settings are used.

-C <root directory>
OR
--changedir <root directory>

Changes focus to the specified directory and will
continue to process files. All files listed on the
command line or in a file list with the --filelist
option will come from this new directory.

The current directory in which the dar create
command is used is the default directory, and can be
explicitly referenced with a period (i.e. “-C .”)

-p <platform name>
OR
--platform <platform name>

Specifies the location of the platform hierarchy for the
files included with the following --filelist option,
and the following --classpath option until the next
--platform is reached in the string of dar create
options.

The top level platform is the initial default platform, or
it may be explicitly referenced by using all
(i.e. “-p all”).
Preparing Bundles and Servers for Deployment � 151

-f <list of files>
OR
--filelist <list of files>
OR
<file> [<file> ...]

Specifies the files (listed directly on the command
line) or points to a file that contains the list of files to
be included (one file name per line). Specifying a
hyphen as an argument instead of a file name
(i.e. “-f -”) results in the file name being read from
System.in.

Since multiple platform information can be provided
in a single dar create command, the --filelist
(along with the --classpath) option can appear
multiple times in a command.

-c <“bundle classpath”>
OR
--classpath
<“bundle classpath”>

Provides a CLASSPATH for the bundle used to create
the DAR. The argument used with this option should
be bound by quotes to accommodate the use of
semi-colons.

If this option is not provided, then all JARs found are
added to the CLASSPATH.

Since multiple platform information can be provided
in a single dar create command, the --classpath
(along with the --filelist) option can appear
multiple times in a command.

Option Purpose:
152 � Chapter 8

 Chapter 9
End User and Administrator Access

n Chapter 6, Configuring Bundle Runtime Properties, you learned how to
configure bundle properties that affected how it behaved at runtime. This
included how, at startup or installation time, a bundle would ensure the

client-side user attempting to access it was permitted to do so. This functionality
is handled by DeployDirector’s set of authentication and authorization
modules. In this chapter, you are given an in-depth explanation of these
modules, and are shown how to use the Administration Tool to set up
authorization lists for bundles. Additionally, you will learn about the use of the
Administration Tool to define and manage administrator roles.

An Overview of User Authentication and Authorization
DeployDirector ensures that only certain users are allowed to access bundles on
your organization’s servers, and if required, that only certain subsets of users
can access particular bundles or versions. Authentication and authorization
comprise the two-punch process that ensures this occurs.

Authentication determines whether a user is who they claim to be, while
authorization determines whether an authenticated user is permitted to install
and run the particular bundle they are requesting.

I

153

Programmatically, authentication and authorization have been modularly
implemented in DeployDirector, allowing you to plug in classes whose
properties best match your deployment environment and needs. The following
outline is meant to act as both an orientation to, and a reference for the
programmatic side of authentication and authorization in DeployDirector:

The following sections describe the roles and properties of the module types,
the modules that implement them, as well as the editors through which
authentication or authorization information is received.

EditorModule Type Module

Authentication

Authorization

ClientAuthenticateAll

ClientSerialNumber

ClientUsernamePassword

Customized Class

SerialNumberEditor

UsernamePasswordEditor

Customized Editor

Client-Side Authentication Classes

AuthenticateAll

JNDIAuthentication

SimpleAuthentication

WindowsAuthentication

Customized Class

JNDIEditor

SimpleAuthEditor

WindowsAuthEditor

Customized Editor

Server-Side Authentication Classes

AuthorizeAll

DefaultAuthorization

Customized Class

DefaultEditor

Customized Editor

Server-Side Authorization Classes

ClientAuthentication

CAM Module

SAM Module

DeployDirector

HierarchicalGroupAuthorization

DefaultGroupAuthorization

NISAuthGroups

SimpleAuthGroups

DefaultGroupEditor

NISAuthGroupEditor

SimpleAuthGroupEditor

Server-Side Group Authorization Classes

Group Authorization
154 � Chapter 9

Authentication and Authorization Module Types
The three authentication/authorization module types, found in the
com.sitraka.deploy package, are the code modules into which you can plug
specific authentication and authorization classes. Since authentication and
authorization is a process where exchanges occur between the CAM and SAM
(i.e. the client and server sides), modules and classes are located in the
appropriate area.

ClientAuthentication determines and manages the type of authentication
information that is required, and how it is collected from the user. The type of
class used also determines whether the information is stored on the client side.

Authentication manages the actual, server-side authentication of a user.

Authorization determines if the user (once they have been authenticated) has
permission to access specific bundles and bundle versions. Authorization can
be applied to both individual users, as well as defined authorization groups.

Client-Side Authentication Module and Editor Classes
The client-side authentication classes implement the ClientAuthentication
interface. They reside on the client side (i.e. in the CAM), and collect the
necessary information. This information is sent to the SAM, where it is handled
by the server authentication module.

ClientAuthenticateAll is used when no user identification is required (i.e. the
bundle is freely available to all who request it). Thus, it has no editor and
contains no authentication information. It is typically used in conjunction with
the AuthenticateAll server-side authentication class.

ClientSerialNumber is a serial number-based authentication class. The
authentication information consists solely of a serial number. This class uses the
SerialNumberEditor class to retrieve the serial number from the client.

ClientUsernamePassword is the commonly used client authentication class. It
bases authentication information on a user name and password, and uses the
UsernamePasswordEditor class to retrieve the user name and password
combination from the client.
End User and Administrator Access � 155

AbstractClientHTTPAuthentication is an abstract base class that implements basic
HTTP authentication. This base class is used by both ClientSerialNumber and
ClientUsernamePassword.

Client-side authentication editor classes work in tandem with their partner
module classes by providing the GUI that gathers the authentication
information from the user. Each editor was designed to be used with a specific
module class.

SerialNumberEditor obtains a serial number from the client, and works with the
ClientSerialNumber class. This editor typically runs in the bundle installation
applet, and is used by the end user to input information.

UsernamePasswordEditor obtains a user name and password from the client, and
works with the ClientUsernamePassword class. This editor typically runs in the
bundle installation applet, and is used by the end user to input information.

Server-Side Authentication Module and Editor Classes
The server-side authentication classes implement the Authentication interface.
They reside on the server side (i.e. in the SAM), and validate the authentication
information (typically a user name and password) sent to it by the CAM-based
authentication module.

AuthenticateAll is used when no user identification is required. Thus, it has no
editor and receives no authentication information. This class is typically used in
concert with the ClientAuthenticateAll client-side authentication class.

JNDIAuthentication is a JNDI-based authentication class. This class looks for a
JNDI-accessible naming service that provides user name/password validation,
which currently is only NIS (i.e. it validates user names and passwords against a
Unix login). This class uses the JNDIEditor class to obtain configuration
information.

Note: In order to use NIS authentication within the JNDI framework, two
specialized JARs are required (NIS.jar and ProviderUtil.jar), which are
available at Sun Microsystem’s JNDI service provider’s page at
http://java.sun.com/products/jndi/serviceproviders.html. Downloading the
NIS service provider provides a package that contains these JARs.

Once downloaded, your CLASSPATH needs to be modified to include these
JARs. However, if you are using DeployDirector’s standalone server, be sure
the JARs are placed in the deploydirector/lib directory. When run, the
standalone server will automatically add JARs found in that location to the
CLASSPATH.
156 � Chapter 9

http://java.sun.com/products/jndi/serviceproviders.html
http://java.sun.com/products/jndi/serviceproviders.html
http://java.sun.com/products/jndi/serviceproviders.html

SimpleAuthentication is the most commonly used server-side authentication
class. Its table-based authentication method validates user name/password
information against a list of valid combinations provided in a data file. This
class uses the SimpleAuthEditor class to get this information.

WindowsAuthentication is a Windows-based authentication class, which works
similarly to JNDIAuthentication. This authentication module uses Windows
95/98/NT/2000 authentication to verify the user name and password
combination provided by the client (i.e. it validates user names and passwords
against a Windows login). The class uses the WindowsAuthEditor class to obtain
its configuration information.

AbstractAuthentication is an abstract base class that implements basic server-
side authentication. This base class is used by JNDIAuthentication,
SimpleAuthentication and WindowsAuthentication.

Server authentication editors work together with their partner module classes
by allowing the entry and edit of authentication information. This information
can be a table of user authentication data (as with SimpleAuthentication) or it
can be information required to set up a connection to authentication
information (as with JNDIAuthentication and WindowsAuthentication). The
server-side authentication editors run inside the DeployDirector Administration
Tool, and each are used with a specific module class.

JNDIEditor lets system administrators configure the JNDI naming service look-
up in the Administration Tool. This editor class is used with
JNDIAuthentication.

SimpleAuthEditor lets system administrators enter and edit user name and
password combinations. It is used with SimpleAuthentication.

WindowsAuthEditor lets system administrators configure Windows
authentication look-up, and is used with WindowsAuthentication.

Authorization Module and Editor Classes
It is probably not surprising that authorization classes implement the
Authorization interface. These classes determine whether a particular user has
access to a particular version of a particular bundle. Since determining user
access privileges to vault-based bundles is a server-side issue, these classes
reside on the server side (i.e. in the SAM).

AuthorizeAll allows all users access to all bundles and bundle versions. This class
is used when no user authorization is required. As such, this module class has
no editor class, and since no authorization information exists, no data file is
required.
End User and Administrator Access � 157

DefaultAuthorization authorizes user/version/bundle combinations based on the
contents of an authorization configuration file that stores valid combinations as
comma-separated values. This class uses the DefaultEditor class in the
Administration Tool and also works with the Version authorization support
class.

Version handles the notion of a bundle version, and works with the
DefaultAuthorization class. The Version class includes code that models any
release, qualified releases and beta releases.

There is one authorization editor, which works in conjunction with the
DefaultAuthorization module class.

DefaultEditor allows system administrators to configure DefaultAuthorization
by allowing user/version/bundle entry input into the .dat file.

Group Authorization Module and Editor Classes
The following are special authorization classes that allow administrators to
define groups of users that can be authorized to access specific bundles, instead
of relying on the specific user-level settings that are used with regular
authorization.

DefaultGroupAuthorization authorizes bundle/version/group combinations
based on the contents of a data configuration file that stores valid combinations
as comma-separated values. This class uses the DefaultGroupEditor class in the
Administration Tool.

HierarchicalGroupAuthorization is similar to DefaultGroupAuthorization, but
also takes into account the specificity of a user’s presence in authorization lists
(e.g. a user’s individual authorization settings overrides those they have as part
of an authorization group).

NISAuthGroups is an NIS-based group authorization class whose configuration
information (maintained with the JNDIAuthGroupEditor) identifies the NIS
server that is used to retrieved authorized users.

Note: In order to use NIS authentication within the JNDI framework, two
specialized JARs are required (NIS.jar and ProviderUtil.jar), which are
available at Sun Microsystem’s JNDI service provider’s page at
http://java.sun.com/products/jndi/serviceproviders.html. Downloading the
NIS service provider provides a package that contains these JARs.

Once downloaded, your CLASSPATH needs to be modified to include these
JARs. However, if you are using DeployDirector’s standalone server, be sure
the JARs are placed in the deploydirector/lib directory. When run, the
standalone server will automatically add JARs found in that location to the
CLASSPATH.
158 � Chapter 9

http://java.sun.com/products/jndi/serviceproviders.html
http://java.sun.com/products/jndi/serviceproviders.html
http://java.sun.com/products/jndi/serviceproviders.html

SimpleAuthGroups facilitates the creation and maintenance of authorization
groups, by using a data file that is managed using the SimpleAuthGroupEditor
in the Administration Tool.

Group authorization editors work together with their sister module classes by
allowing the entry and editing of information that defines authorization groups
(SimpleAuthGroups), associates bundles with established authorization groups
(DefaultGroupAuthorization), or information that is required to set up a
connection to authorization information (JNDIAuthGroupEditor).

DefaultGroupEditor facilitates the creation and maintenance of authorization
groups for system administrators. Working with the
DefaultGroupAuthorization class, group names and the members of which
they are comprised are defined here.

NISAuthGroupEditor lets system administrators configure the NIS naming service
look-up in the Administration Tool for group authorization. This editor class is
used with NISAuthGroups.

SimpleAuthGroupEditor allows the maintenance and creation of authorization
groups. Group names and their respective members (separated by commas) are
inputted in this editor.

Authorization Behavior and Allowable Bundle Version Names
Some of the authorization classes mentioned in the previous two sections
(specifically, DefaultAuthorization, DefaultGroupAuthorization, and
HierarchicalGroupAuthorization), affect how a bundle’s versions are named.
When you configure a bundle version to use any of these authorization classes,
it is important that its version name conforms to an x.y.z style format, where
every variable is a whole number, and in which there can be a maximum of
three. When using these authorization classes, valid bundle version names
include:

1
1.4
1.4.999999

The three authorization classes reference the same class file, which processes
version names that strictly conform to this format. (For those who are working
with the DeployDirector SDK, look for the Version class, found in
com.sitraka.deploy.authorization).

This naming constraint enables more flexible authorization statements. For
example, authorizing a user for a more general version name (e.g. 1.2) means
that user is authorized to access any version name that begins with that name
(e.g. they would be automatically authorized to access 1.2.5 and 1.2.10).

Please refer to Adding and Removing Bundles in Chapter 4 for information on
adding and naming bundle versions.
End User and Administrator Access � 159

Authentication and Authorization Configuration Files
Typically, any module class you use will require a configuration file, to which
the class is pointed during authentication or authorization. The type of
information contained in the file is specifically related to the module class it
accompanies. Thus every class that requires a data configuration file has its own
specific version.

Simpler configuration files (e.g. SimpleAuthentication and
DefaultAuthorization) can contain raw information, while other files (e.g.
JNDIAuthentication and WindowsAuthentication) contain information that
redirect to a source that contains validation information. The file name is based
on the module class name. For example:

These files are found in the /auth directory, and are first created when any
authentication or authorization information are initially uploaded to the server.

End-User and Administrator Authentication Lists
DeployDirector uses authentication whenever client-side users try to download
or run a bundle, or when an administrator attempts to gain access to a server
via the Administration Tool or the Remote Administrator. In both cases,
DeployDirector maintains server-side data files for each of the authentication
modules that may be used. These are the basic SimpleAuthentication (for
individual users), and SimpleAuthGroups (for groups of users) modules. Other
authentication modules exist, but these are centered around the use of your
organization’s JNDI directories or Windows login information. As such the data
files associated with these modules do not include user data; the information
they contain possess information on the NIS server or Windows domain.

Module Class Name
Accompanying Configuration File Name
(in com.sitraka.deploy.)

DefaultAuthorization authorization.DefaultAuthorization.authorization.dat

DefaultGroupAuthorization authorization.DefaultGroupAuthorization.authorization.dat

JNDIAuthentication authentication.JNDIAuthentication.authentication.dat

JNDIAuthGroups authentication.JNDIAuthGroups.authentication.dat

SimpleAuthentication authentication.SimpleAuthentication.authentication.dat

SimpleAuthGroups authentication.SimpleAuthGroups.authentication.dat

WindowsAuthentication authentication.WindowsAuthentication.authentication.dat
160 � Chapter 9

Unlike company directories, the SimpleAuthentication and
SimpleAuthGroups modules’ data files are under complete control by
DeployDirector. This means their maintenance is performed via the
Administration Tool. It is important that the contents of these files are kept up
to date, since they are displayed in the authorization editors for bundles that use
these modules. Authorizing users that have not been authenticated is obviously
not recommended.

Regardless of whether you use server data files or directories to populate Users
and Groups lists with authenticated members, you need to understand how
these lists are populated. This is dependent on the combination of
authentication and authorization classes chosen in the bundle configuration.
Please refer to the next section, Viewing End-User Bundle Associations, for
more information about the actual process of authorizing users.

Viewing Authentication Lists
You can view the current list of authenticated individual users (i.e. the contents
of the server file associated with the SimpleAuthentication module, with
which the primary components are user names and passwords) by clicking the
Authentication/Authorization tab in the Administration Tool, then clicking the
Authentication child tab.

You can view authentication groups and their respective sets of members (i.e.
the contents of the server file associated with the SimpleAuthGroups module) by
clicking the User Groups child tab, and selecting the SimpleAuthGroups class in
the Auth Groups drop-down list.
End User and Administrator Access � 161

This group authentication editor allows you to work in two modes: the Default
View and Alternate View. With either view, you can create new groups, and
add groups or users to existing groups. Whenever changes are made to either
file, you must click the Update Server icon (or click File > Update Server).

In the sample image of the group authentication editor shown above, a three-
paned display presents the key information required to view and modify groups
and member lists. The left pane contains a hierarchical view of authentication
groups and users. On the right, the lower pane presents a flat, complete list of
existing groups, and the upper pane presents an exhaustive list of individual
authenticated users.

Important: Whenever you
modify the contents of
either authentication data
file, then move to an
authorization or group
editor that uses these
member lists, always click
the Refresh button to
ensure the lists are current.

The Alternate View (activated by clicking the appropriately labelled lower tab)
presents an easily scanned list of groups and members in tabular format.
Although you can enter new groups and users here, the Default View’s
presentation of group and user information makes it easier to modify
authentication groups.
162 � Chapter 9

The contents of the list in the top-right pane is dependent on the selected
authentication module. The SimpleAuthentication module contains the
server-based list of authenticated users that you create and manage within
DeployDirector. The JNDIAuthentication module displays the users found in
an organization’s NIS directory. When creating or modifying authentication
groups, you can use either user list by selecting its module from the User
Groups drop-down list.

Modifying the SimpleAuthentication data is covered in the next section. The
JNDIAuthentication user list is not modified with DeployDirector, but you can
indicate the location of the directory that will be used. (Please refer to the
procedure about authenticating users against an NIS directory in Setting
Authentication Properties in Chapter 6.)

Managing Authentication Lists
Creating and modifying the authentication list for individual users simply
means working with the user/password data table, which represents
SimpleAuthentication data. Managing authentication groups (i.e.
SimpleAuthGroups data) is also straightforward, and can be performed in the
authentication groups editor’s Default View.
End User and Administrator Access � 163

As mentioned in the previous section, the authentication groups and existing
members are listed in the left pane in a hierarchical list. The list of groups and
members found here are as current as the last time you refreshed the data from
the server, as is the case with the list of authenticated individual users in the top-
right pane.

Important: The information
displayed in the list is
locally cached, thus is as
current as the last time you
refreshed it. It is important
to refresh lists when using
this editor.

Please refer to An
Emphasis On Server
Updating and Refreshing,
found later in this chapter
for more information.

When one or more authentication groups are selected in the left pane (multiple
items can be selected with key-clicking, for example, Ctrl of Shift-clicking on
Windows clients), the contents of the Users list on the right are enabled. Once
enabled, you can select one or more user names and add them to the selected
authentication group(s). Similarly, you can also select entire groups (listed in the
lower-right pane), and add them to selected groups, creating nested
authentication groups.

Although it is up to administrators to decide how complex authentication group
hierarchies can be, the editor validates created groups to ensure that circular
references are not created.

You can also enter new group or user names directly by making selections in
the hierarchical authentication groups list. Selecting the list root, or any groups,
then clicking the ‘add new group’ button, allows the creation of a new group
named via a pop-up dialog box. Similarly, selecting any group (including
nested groups), then clicking the ‘add new user’ button allows the creation of a
new user or users:

Please note that although they are often used together to build authentication
lists, the data files associated with individual authenticated users
(SimpleAuthentication), and authentication groups (SimpleAuthGroups) are
different, and need to be independently configured. For example, even when
you create a new user in an authentication group editor (as shown in the
above-right sample screen), it is not automatically added to the authenticated
individual users list.
164 � Chapter 9

Adding a new user to the authentication data file

1. In the Administration Tool, click the Authentication/Authorization tab, then
click the Authentication child tab.

2. In the Authentication drop-down list, select the
(com.sitraka.deploy.authentication.)SimpleAuthentication class.

The contents of the SimpleAuthentication file are displayed. The list
of users are individuals that, using their user name and passwords listed,
can be allowed to access some or all DeployDirector bundles. Users
present on this list can also be individuals who play the role of a
DeployDirector administrator.

3. Click New.

4. Enter a name and password for the user.

5. Continue to add more users, then click File > Update Server to update the
server data file with these changes.

The next time you use an authorization editor or group authentication
editor that makes use of the SimpleAuthentication module, these new
users will appear in the Users and Groups list.

Modifying or deleting users in the authentication data file

1. In the Administration Tool, click the Authentication/Authorization tab.

2. If you want to modify the list of individual users, click the Authentication
child tab.

If you want to modify groups of users, click the User Groups child tab.

3. Click the appropriate field, then modify its contents, or click a field, then
Delete.

4. Press the Enter key to commit this deletion.

5. Click File > Update server to ensure these changes are recorded on the
server.

For any bundle that is configured to use either of the “simple”
authentication modules, when authorization associations are being
configured via the Users and Groups editor, any changes made here
will be reflected in the list of users.

Adding new or existing groups to other authentication groups

1. In the Administration Tool, click the Authentication/Authorization tab, then
click the User Groups child tab.

2. Click File > Refresh to ensure the data is current.
End User and Administrator Access � 165

The authentication groups found in the server data file are listed in the
left, and lower-right panes. Expanding the groups in the left pane
reveals nested groups, if they exist.

3. In the authentication groups list, select all of the elements to which you
want to add a new group.

To create a top-level group, select the root of the list (labelled as
SimpleAuthGroups). Otherwise select any top-level, or subgroups.

4. To create a new group, click the ‘add new group’ button, then enter a name.
 or

To add one or more existing groups, select them from the Groups list,
then click the ‘add selection’ button.

5. If you have created a new group, continue by adding existing members to
its membership list (covered in the next procedure). Otherwise, click
File > Update Server to update the server data file with these changes.

Note: The behavior of the Groups list (lower-right pane) depends on
what is selected in, or added to, the hierarchical authentication groups
list (left pane): any groups added to the authentication groups list
subsequently appear in the Groups list. In order to prevent circular
nesting, items in the Groups list are disabled when the same groups
have been selected in the authentication groups list. They will also be
disabled if they are the parent groups of any current selections.
166 � Chapter 9

Adding users to authentication groups

1. In the Administration Tool, click the Authentication/Authorization tab, then
click the User Groups child tab.

2. Click File > Refresh to ensure the data is current.

The authentication groups found in the server-side data file are listed in
the left pane. Expand the groups whose members you want to view.

3. In the Users drop-down list, select the
(com.sitraka.deploy.authentication.) SimpleAuthGroups class, or the
NISAuthGroups class, depending which set of authenticated users you want
to view and add.

4. In the authentication groups list in the left pane, select the group(s) to which
you want to add new users.

Tip: When the working
with very long lists of
users, type the first few
letters of a user name to
skip to it in the list.
Pausing, then resuming
key strokes refocuses on
the newly entered letters.

5. In the Users list, select the user or users you want to add to the selected
existing authentication group(s).

6. Click the ‘add selection’ button to add the highlighted users to the
selected authentication groups.

7. Whether you have selected the SimpleAuthGroups or
NISAuthGroups classes, if at this point you need to add users located in the
list you did not choose, select it from the Users drop-down list, and repeated
the last two steps.

8. Click File > Update Server to update the server data file with these changes.
End User and Administrator Access � 167

The next time you use an authorization editor that makes use of the
SimpleAuthGroups authentication module, these new groups and users
will appear in the Users and Groups list.

Deleting groups from the group authentication list

1. In the Administration Tool, click the Authentication/Authorization tab, then
click the User Groups child tab.

2. Click File > Refresh to ensure the data is current.

The authentication groups found in the server-side data file are listed in
the left pane. Expanding the groups in the left pane reveals nested
groups, if they exist.

3. Select the group(s) you want to remove from the authentication list.

4. Click the ‘delete’ button.

All instances of the authentication group disappears from both the
hierarchical authentication groups list in the left pane, and the Groups
list in the lower-right pane.

5. Click File > Update server to ensure these changes are recorded on the
server.

For any bundle that is configured to use this authentication module,
when authorization associations are being configured via the Users and
Groups editor, any changes made here will be reflected in the list of
users.

Viewing End-User Bundle Associations
When you configure bundles (through the Bundles tab or the Bundle Wizard),
one set of properties that needs to be configured are the Access properties.
Configuring them means declaring which authentication and authorization
modules are used, which determines which users and groups have access to
them. Furthermore, you may need to declare which users and groups are
permitted to access specific bundle versions.

The Bundle Authorization tab (a child tab of the Authentication/Authorization
tab) displays authorization associations between bundles, bundle versions, and
groups and/or users:
168 � Chapter 9

While the Alternate View clearly shows a list of existing users who are
authorized to access specific bundle versions, this Default View offers an easy
way to set up potentially diverse sets of authorized users.

In each pane, you are shown lists of (from left to right) bundles, users and
groups, as well as bundle versions. Setting up authorization associations
properly requires an understanding of how these lists are populated, as well as
the behavior of these displays.

Default and Alternate Views of End-User Associations
In the section Viewing Authentication Lists on page 161, you learned about the
server data files associated with the SimpleAuthentication and
SimpleAuthGroups modules. Using the editors for these two authentication
modules (accessed via the Authentication and User Groups child tabs in the
Administration Tool), you are able to modify the contents of the data files, thus
manage authenticated users.

The editors provided to assist your creation of end-user authorization
associations (via the Bundle Authorization child tab) offer this aforementioned
“grid” view, as well as the Default View:
End User and Administrator Access � 169

Whether using the Default View or the Alternate View, all associations shown
and made affect the data file associated with the module selected from the
editor’s authorization drop-down list (in the above screen images, the
DefaultGroupAuthorization module is used).

Considering how the views are structured, it is recommended that you use
Alternate Views to easily see a list of current associations. Since the features
provided in this view are a subset of those found in the Default View, you
should use Default Views to actually create and modify associations.

The one task that can be performed exclusively in the Alternate View is the
creation of associations that involve elements (i.e. users, bundles or versions)
that do not yet exist.

Creating associations for future users or bundles

1. In the Administration Tool, click the Authentication/Authorization tab, then
click the Bundle Authorization child tab.

2. In the Authorization drop-down list, select the authorization module whose
user-bundle-version associations you want to modify.
170 � Chapter 9

The contents of the chosen module and file are displayed with the
Default View.

3. Click the Alternate View tab, which is located below the Default View lists.

This view displays the existing associations through which users are
authorized (using the module to which this data file belongs) to use a
particular version of a particular bundle.

4. Click New to begin entering a new association.

5. In the User ID or Group/User field, enter the name of an existing or new
(nonexistent) user or group.

6. In the Bundle field, enter the name of a vault-based bundle, or a new
(nonexistent) bundle.

7. In the Version field, enter the bundle’s version name.

8. Continue to add more records, then click File > Update Server to update
the server-side data file with these changes.

Since you have added records for users or bundles that do not yet exist,
it is important to ensure these lose ends are eventually tied. If the
bundle, user, or version are not created as anticipated, it is
recommended that you clean up this nonexistent authorization
association by deleting that record. Otherwise you may see broken
associations in the authorization editor, as described in condition #3 in
Displaying Bundles on page 171.

Displaying Bundles
When you click the Bundle Authorization child tab, you are shown lists of
bundles, users and versions. The contents of the Bundles list does not
necessarily represent every bundle that exists on the server to which the
Administration Tool is connected, or the administrator workstation on which
the Administration Tool is running. There are three cases in which bundles will
be listed.

1. The bundle’s latest version’s Authorization module matches the module
currently selected in the authorization editor.

In the process of configuring a bundle, an administrator selects a particular
authorization module that the bundle uses, then may switch over to the
authorization editor, then creates associations for users and groups listed for
that module.
End User and Administrator Access � 171

In the example below, the bundle (named Application), is configured (in the
Bundles tab) to use the DefaultAuthorization module. This version of the
bundle is the only, thus most recent version. When the same authorization
module is selected in the authorization editor (shown in the lower screen), the
Application bundle appears as the only current bundle in the list. This means
none of the latest versions of other bundles on the server, and none of the other
uncommitted bundles on the administrator’s workstation, are configured to use
the DefaultAuthorization module.

2. A bundle’s version has been configured to use an authorization module that
matches the module currently selected in the authorization editor, but it is
not the most recent bundle version.

While it is more common for bundles to always be configured to use the same
authentication and authorization modules from version to version, it is entirely
possible for these properties to be changed.

If an administrator, while configuring a new bundle version, selects an
authorization module that differs from that of a previous bundle version, the bundle
will appear in two places in the authorization editor.
172 � Chapter 9

In the editor, when the selected authorization module matches that of the latest
bundle version, the bundle appears as a current one. However, when the
authorization module in the editor is changed to match that of an older (i.e. not
top-most) version, the bundle will appear as noncurrent (denoted by a red ‘X.’)
This is solely meant to indicate to the administrator that the bundle has mapped
authorization associations that do not lead to its latest version.

In the example below, the bundle’s most recent version (1.7) is configured to
use the DefaultGroupAuthorization module. As such, it appears as a current
bundle in the authorization editor when that same authorization module is selected
(see lower screen). The Bundles list shows that no other bundles on the server
or the administrator’s workstation have versions that use (or used) this
authorization module.
End User and Administrator Access � 173

However, looking back at the main Bundles configuration screen (via the
Bundles tab), a previous version of the bundle (1.6) used the
DefaultAuthorization module. After selecting the same module in the
authorization editor (as shown in the lower screen), the Bundles list indicates
that this bundle is not current. Thus, in this case, the non-current status of the
bundle means a previous version was configured to use the authorization
module that is currently selected in the editor.
174 � Chapter 9

3. An authorization record exists which refers to a bundle that does not yet
exist.

In the following example, the DefaultAuthorization module has been selected
in the editor. Of the three bundles listed, FutureBundle does not appear in the
bundle list in the general bundle configuration tree (as shown in the lower
screen):
End User and Administrator Access � 175

Since it does not appear in the main bundle tree, it is clear that it has not yet
been created with the Administration Tool. However, if the
DefaultAuthorization module’s data file is examined using the Alternate
View, a reference to FutureBundle is found:

Based on this example, authorization associations that exist in the server-side
data file for a given module are always reflected in the editor’s Bundles list. This
holds true even if the bundle does not exist on the deployment server, and was
manually added to the authorization data file. (Perhaps this was the work of a
keen administrator, who was preparing for future development projects in the
hopes that such foresight would contribute to a bonus that we all know they will
never get.)

Displaying Users and Groups
When you click the Bundle Authorization tab to view current, or create new
authorization associations, the content of the Users and Groups list is dependent
on how bundle properties have been configured. As a rule, DeployDirector will
populate the list based on the authentication and authorization modules chosen
for a particular bundle, and whether any users exist in those chosen lists.

At the beginning of this chapter, you were introduced to the different default
authentication and authorization modules that DeployDirector uses. The
following examples demonstrate how the selection of different modules affects
the content of the Users and Groups list.
176 � Chapter 9

As shown in the main bundle tree, the bundle named Application has been
configured to use the JNDIAuthentication module to authenticate client-side
users, and group authorization lists will be compiled using an organization’s
NIS directory (DefaultGroupAuthorization using the NISAuthGroups module).

When the Bundle Authorization child tab is clicked, the proper Authorization
module must first be selected from the drop-down list. Since the bundle was
configured to use the DefaultGroupAuthorization module, this is what is
selected. Doing so produces a list of bundles in the left pane that are configured
to use this module. Selecting the Application bundle populates the Users and
Groups list with the appropriate data.

As shown in the above illustration, the list contains all users and work groups in
the organization’s NIS directories.
End User and Administrator Access � 177

As a contrast to the previous example, the next bundle is configured to use
DeployDirector’s own server-side authentication data files. Here, the bundle
has been configured to use the SimpleAuthentication module, which
authenticates client-side users against its related data file. Additionally, group
authorization lists will be compiled based on the contents of the server file
associated with the SimpleAuthGroups module.

Moving back to the Bundle Authorization child tab, if the same authorization
module is selected, and the Monopoly bundle is chosen, the Users and Groups
list is populated differently. This time, the contents of this list come from the
two data files instead of the NIS directory.
178 � Chapter 9

Based on these examples, the authorization editors provide a controlled
environment in which you can create authorization associations. Only users
relevant to the authentication module chosen during the configuration of the
bundle will appear in user lists.

Note: Whenever you modify any authentication lists (in the editors found in the
Authentication or User Groups child tabs) that may affect Users and Groups
content in the authorization editor, always remember to use the Refresh button
to ensure the content is always current.

Manually Adding Names to the Users and Groups List

You can manually add names to the Users and Groups list by entering one the
field below the list, then clicking Add.

Once you authorize this user to access a bundle version, this association will be
recorded in the related server authorization data file. However, authorized
users still need to be authenticated by DeployDirector. It is your responsibility
to ensure that this manually added user exists, or is added to the appropriate
authentication data file.
End User and Administrator Access � 179

In the most recent example on the previous page, the Users and Groups list in
the authorization editor was comprised of authenticated users and groups found
in the data files associated with the SimpleAuthentication and
SimpleAuthGroups modules. Adding a new user, and creating an association in
the authorization editor would result in a new entry in the
DefaultGroupAuthorization module’s data file, but this new user would not
appear in either of the authentication lists/data files automatically.

To avoid potential mix-ups, it is recommended that you first ensure all users are
found in the appropriate authentication data files before authorizing them.

Note: If you configure a bundle to use the WindowsAuthentication module, the
Users and Groups list will not be automatically populated in an authorization
editor. In this case, you will have to manually add the Windows user names in
the authorization editor. (For each user, enter their user name, then click Add.)

Selecting Bundle Versions
When creating associations in any authorization editor, selecting a bundle, then
a user or group will result in the display of at least one bundle version in the
right pane. The Versions pane allows you to finish establishing your
authorization association by selecting which version of a selected bundle the
selected user or group is authorized to use.

The contents of the Versions list is dependent on the number of versions that
exist for the selected bundle, and which sets of authorization keywords exist for
the authorization module you are using.

By default, DeployDirector’s authorization modules include one set of
authorization keywords called Any Release, which authorizes a given user to
access the latest release. If you are using the DeployDirector SDK to create
custom authorization classes, other sets of authorization keywords will also
appear in the Versions list.
180 � Chapter 9

Managing End-User Bundle Access
In the previous section, you learned how the authorization editor’s Bundles,
Users and Groups, and Versions lists are populated. When authorizing users to
access a bundle, it is important to remember how bundles and users appear in
these lists. From here, the Bundle Authorization editor can be used to easily
create associations between users and specific bundle versions.

Authorizing Users or Groups to Access Bundle Versions
In Setting Authorization Properties in Chapter 6, you were shown how to
configure bundles to authorize client-side users in different ways. One step in
these procedures requires the administrator to review and edit the users or
groups that are authorized to use the bundle version that is being configured.
Regardless of which authorization module is in focus in the authorization
editor, the general process of authorizing users is the same for each one.

When authorizing users by creating associations, a list that is found in the editor
is populated based on the selection made before it. The example screen below
shows:

� the module selected from the Authorization drop-down list determines
which bundles appear (those whose most recent version is configured to use
that module),

� the selected bundle’s latest version determines which Users and Groups
appear (i.e. users that appear are based on the authentication module used
by the version),

� the Versions appear when a user or group is selected, and these reflect the
versions that exist for that bundle, including uncommitted ones that are
currently being configured.
End User and Administrator Access � 181

Tip: You can select
multiple members in the
Users and Groups list by
key-clicking (e.g. Ctrl or
Shift-clicking on Windows
clients).

When you select a version, the chosen user or group becomes authorized to
access it. This action is confirmed when their name is bold faced.

Finally, always click the Update Server button (also accessed in the menu with
File > Update Server).
182 � Chapter 9

Viewing Administrator Roles
DeployDirector comes packaged with a default “super administrator” role
(initially discussed in Chapter 1, Installation and Setup). Your organization may
also require the presence of administrators that have their own domains, in
which specific bundles require their attention.

The Admin Authorization tab (a child tab of the Authentication/Authorization
tab) displays authorization associations between users (acting as administrators)
and bundles, and which users have server access:

As with the authorization editors, the Alternate View shows existing users who
are authorized to administer bundles or servers, and the Default View offers an
easy way to actually set up authorized users.

Similar to the authorization editors, in each pane, you are shown lists (from left
to right) of Roles, Users and Groups, and Access. Using these lists to grant
administrator status requires an understanding of how they are populated.
End User and Administrator Access � 183

Default and Alternate Views of Administrator Associations
In the section Default and Alternate Views of End-User Associations on page
169, you learned about the two views provided by authorization editors:
Default Views and Alternate Views.

The editors provided for authorization users to administrate bundles and
servers offer the same types of views:

It is recommended that you use the Alternate Views to view lists of current
associations (e.g. in the top screen, above). Since the features provided in this
view are a subset of those found in the Default View, you should use Default
Views to actually create and modify associations.

The one task that can be performed exclusively in the Alternate View is the
creation of associations that involve elements a user or group that does not yet
exist.
184 � Chapter 9

Authorizing future (nonexistent) administrators

1. In the Administration Tool, click the Authentication/Authorization tab, then
click the Admin Authorization child tab.

2. Click the Alternate View tab, which is located below the Default View lists.

This view displays the existing associations through which users are
assigned roles, and are authorized to manage servers, or specific
bundles.

3. Click New to begin entering a new association.

4. In the Role field, select whether this new user is a Server Administrator, or
Bundle Administrator.

5. In the User/Group field, enter the authenticated name of the new
administrator body.

6. In the Attributes field, if the new administrator will manage bundles, enter
the name of the vault-based bundle. If the user is a Server Administrator,
leave the field empty.

7. Continue to add more records, then click File > Update Server to update
the server-side data file with these changes.

Since you have added records for users that do not yet exist, it is important to
ensure these lose ends are eventually tied. If the user is not created as
anticipated, then it is recommended that you clean up this nonexistent
authorization association by deleting that record.

Displaying Users and Groups
When you click the Admin Authorization tab to view current, or create new
administrator authorization associations, the content of the Users and Groups
list is dependent on how the server’s cluster.properties file has been
configured. As a rule, DeployDirector will populate the Users and Groups list
based on the authentication and authorization modules set in the
cluster.properties file, and whether any users exist in those chosen lists.

The two cluster properties referenced by the Administration Tool to populate
Users and Groups lists are:

deploy.admin.authentication

and
deploy.admin.authgroups
End User and Administrator Access � 185

At the beginning of this chapter, you were introduced to the different default
authentication and group authorization modules that are used by
DeployDirector. One of these modules (or a custom class you create with the
DeployDirector SDK) is referenced. By default, these cluster properties are
respectively set to:

Tip: Please see End-User
and Administrator
Authentication Lists on
page 160 for more
information about these
standard authentication
modules / classes.

com.sitraka.deploy.authentication.SimpleAuthentication

and
com.sitraka.deploy.authentication.SimpleAuthGroups

These modules can be changed so that other authentication sources are used to
populate the users list. To do this, you need to modify your
clusters.properties file.

In the following procedure, the source of the list of authenticated users will be
changed. Instead of retrieving a list of users from the SimpleAuthentication
and SimpleAuthGroups data files, the editor will reference an organization’s
NIS directory.

Despite the fact that this user list source can be changed, it is likely that the
number of administrators in your organization will be small enough, that the
maintenance of the DeployDirector-based data files will introduce negligible
overhead.

Changing the administrator Users and Groups source

1. Shut down the DeployDirector server whose administrator roles you wish
to reconfigure.

2. In a text editor, open the cluster.properties file, which is found in the
<installpath>/deploydirector/ directory.

3. Locate the deploy.admin.authentication property, and replace the
currently referenced class with another DeployDirector authentication
class, or your own custom class, ensuring you enter its full package.

For this example, the new class for user authentication could be
com.sitraka.deploy.authentication.JNDIAuthentication, which
will authenticate users against their JNDI login information.
186 � Chapter 9

4. Locate the deploy.admin.authgroups property, and replace the currently
referenced class with another DeployDirector class, or your own custom
class, ensuring you enter its full package.

For this example, the new class for group authentication will be
com.sitraka.deploy.authentication.NISAuthGroups, which will
authenticate all user groups from the NIS directory.

5. Save the changes you have made to the cluster.properties file.

6. Restart the server.

7. Run the Administration Tool.

8. Click the Authentication/Authorization tab, then click the Admin
Authorization tab.

Clicking either the Bundle Administrator or Server Administrator roles
will result in the populating of the Users and Groups list. The contents
of this list will reflect the changes made to the cluster.properties file,
since the new authentication classes used will produce different lists of
people.

In this example, since the SimpleAuthentication and
SimpleAuthGroups modules were replaced by JNDI/NIS related
modules, the contents of the Users and Groups list will be based on
users found on your company’s directory, as opposed to the contents of
the simple server data files.
End User and Administrator Access � 187

Managing Administrator Access
In the previous section, you learned how certain groups of authenticated users
(based on a source you have defined) appear in the Admin Authorization
editor’s Users and Groups list. To manage administrator roles and access, use
the Admin Authorization editor to define roles for these users, which includes
bundle administrators, and server administrators. This is performed by creating
associations between users and roles.

Defining Bundle Administrators
Bundle Administrators can be defined to manage any number of bundles. They
may have complete access to all an organization’s bundles, or if the
organization is quite large or has rigidly separated departments, bundle
administrators may also have access to a very specific subset of bundles.

When a member has been selected in the Users and Groups list, all bundles
found on the server appear in the Access list in the right pane. In this list,
bundles that are selected fall under the jurisdiction of the user.

Tip: Multiple bundles can
be selected from the
Access list by key-clicking
(e.g. Ctrl and Shift-clicking
on Windows clients).

Once this association has been updated on the server, that user will be able to
log in the Administration Tool and make use of their limited power.
188 � Chapter 9

When it comes to bundle configuration, the actions that Bundle Administrators
can perform, and the privileges they have, are identical to those of top-level
administrators. However, Bundle Administrators will not have the ability to
modify any server-related settings, which include JRE management, server-side
authentication, authorization modifications, or transfer group management.
Additionally, they will have limited access to the Remote Administrator.

Additionally, while they will be able to see all the bundles that exist in the vault,
they will not be permitted to update the server with any changes they make to a
bundle to which they have not been granted administrator access.

Assigning users to administrate specific bundles

1. In the Administration Tool, click the Authentication/Authorization tab, then
click the Admin Authorization child tab.

2. In the Roles list, click Bundle Administrator.

Selecting a Role populates the Users and Groups list, whose contents
are dependent on user/group source files declared in the main
cluster.properties file.

3. From the Users and Groups list select a member (whether it is an individual
user or a group).

Selecting a member from Users and Groups populates the Access list,
which consists of all the bundles that are found in the server vault.

4. Select all the bundles to which this user is permitted to administrate. Use
key-clicking (e.g. Ctrl-clicking and Shift-clicking on Windows clients) to
make multiple non-contiguous selections.

When a selection is made, the user name is bold-faced to indicate that
an association exists between a user and one or more bundles.

5. Continue to promote more users the Bundle Administrator role, then click
File > Update Server to commit these changes.
End User and Administrator Access � 189

Defining Server Administrators
Server Administrator privileges are identical to those of the default
administrator profile that comes with DeployDirector. While you can create
other custom roles, DeployDirector offers one default Server administrator role.
Those who are given this role will be able to access and modify all aspects of
the DeployDirector system, which includes functions available in both the
Administration Tool and the Remote Administrator.

The process of assigning users the Server Administrator role is very similar to
that used for declaring Bundle Administrators.

Assigning users to be server administrators

1. In the Administration Tool, click the Authentication/Authorization tab, then
click the Admin Authorization child tab.

2. In the Roles list, click Server Administrator.

Selecting a Role populates the Users and Groups list, whose contents
are dependent on user/group source files declared in the main
cluster.properties file.

3. From the Users and Groups list select a member (whether it is an individual
user or a group).

Selecting a member from Users and Groups populates the Access list,
which by default contains one choice: complete server access.

4. Select the Access option to assign the chosen user or group the Server
Administrator Role.

When a selection is made, the user name is bold-faced to indicate that
an association exists between a user and one or more bundles.

5. Continue to promote more users the Server Administrator role, then click
File > Update Server to commit these changes.
190 � Chapter 9

An Emphasis On Server Updating and Refreshing
Throughout this chapter, as well as in End-User Authentication and
Authorization in Chapter 6, you were reminded to use the server Refresh
button (or, File > Refresh in the menu) to retrieve the latest user information
from server data files, and to always finish any procedure by using the Update
Server button (or, File > Update Server in the menu) to make sure your changes
are sent to the server.

Most sections in this chapter refer to the various server data files, accessed and
modified by the authentication or authorization editors in the Administration
Tool.

In a single-administrator environment, it is good practice to refresh the user
data before modifying and uploading changes to the server; in a multi-
administrator environment, it is vital to do so.

The data files viewed in the Administration Tool editors are locally cached versions
of the server data files. Only when you use the (server) Refresh and Update
Server commands can you be assured that the data you see, and the data you
have modified, will truly match that which exists on the server.

In multi-administrator environments, there exists the possibility that two
administrators may view and modify the same server data file from separate
workstations. Whether or not administrative precautions are made to avoid
situations like this one, whenever any administrator is managing data in any of
the authentication or authorization editors, it is recommended that they:

� Click the (server) Refresh button (or use File > Refresh) to ensure current
server data is being used, before performing any actions.

� Make changes in the authentication or authorization editor.

� Commit their changes to the server by clicking the Update Server button
(or use File > Update Server).
End User and Administrator Access � 191

Customizing the Default Module and Editor Classes
As mentioned earlier in this chapter, client and server-side authentication, and
authorization can be customized using the DeployDirector SDK. While the
default classes cover a variety of authentication and authorization possibilities,
there may be specific issues within your deployment process that require
modifications to these classes, or the creation of new ones.

By customizing the authentication classes, you can determine:

� what kind of authentication editor is used in the bundle installer,

� what type of authentication information is required from the user,

� where user authentication profiles are stored,

� in what form user profiles are stored.

By customizing the authorization classes, you can determine:

� how authorization information is stored,

� where user authorization profiles are stored.

It is recommended that you extend the existing DeployDirector classes, as they
provide features that can act as the foundation for enhancements.
192 � Chapter 9

 Chapter 10
Viewing and Managing Logs

eeping track of all client and server activity on your organization’s or
department’s deployment network is facilitated by DeployDirector’s
reporting functionality. During the deployment process, servers

automatically log information that can help system administrators keep track of
and analyze deployment activity. By default, generated logs are stored as server-
side files, but can also be written to a JDBC-compliant database.

Overview of DeployDirector Logs
DeployDirector generates four types of logs: the Clients database, the Client
Log, the Server Log and the Server Load Log. These can easily be viewed by
clicking the Reporting tab in the Administration Tool, or by clicking the
appropriate link in the Remote Administrator. (It is recommended that you use
the Administration Tool to view log reports, as the information can be sorted by
column.)

Clients Database
Part database, part log, all cop. The Clients database provides an easy way of
keeping track of all client-side end users who have requested the installation of
bundles. The log provides a summary of client-side users, the bundle versions
they have downloaded and installed, as well as the details surrounding the
installation of those bundles.

To view the Clients database, click the Clients tab in the Administration Tool, or
navigate to the Client: View page in the Remote Administrator.

K

193

ServerID: The server from which the client-side user downloaded the bundle.
(The value shown is either the machine’s IP address or its name.)

Client ID: The ID associated with the client machine’s CAM.

User ID: The client machine user’s name.

Bundle Name: The bundle downloaded by the client-side user.

Bundle Version: The bundle version downloaded by the client-side user.
194 � Chapter 10

Last Connection: The last time the client-side user connected to the server
through an application bundle.

Last Client IP: The most recent IP address from which the client-side user
connected to the server.

Initial Version: The first version of the particular bundle the client-side user
downloaded and installed.

Initial User ID: The user ID used to authenticate and authorize the client-side
user.

Install Date: The date and time the bundle was installed on the client machine.

Client Log
The Client Log is used to monitor client-side events. It summarizes all events
and errors that occur during client-server interaction and client machine
activity. Events and errors can occur during bundle deployment, installation
and execution.

By default, bundles are configured so that client-side exceptions are written to
the Client Log (as well as printed to the console and a user dialog box). This
setting can be turned off, and the information can be written to a separate file.
(Please refer to Client-Side Exception Handling and Output in Chapter 6,
Configuring Bundle Runtime Properties.)

To view the Client Log, click the Client Log tab in the Administration Tool, or
navigate to the Client: Log Statistics page in the Remote Administrator.
Viewing and Managing Logs � 195

Timestamp: The date and time on which the logged event or message was
generated.

Server ID: The server to which the client-side user was connected when the
logged event or message was generated.

Event: The event that prompted the generation of the log entry.

Client ID: The ID associated with the client machine’s CAM.

User ID: The name of the client machine user linked to the event or message.

Bundle Name: The bundle downloaded to, or running on, the client machine.

Bundle Version: The bundle version downloaded to, or running on, the client
machine.

Notes: Any generated messages by the Java Virtual Machine or the Web
browser.

Server Log
The Server Log is used to monitor all server-side activity. It summarizes all
events and errors that occur during server activity and server-server interaction.
Events and errors can occur during bundle and log replication, cluster logging
and inter-server communication sessions.

To view the Server Log, click the Server Log tab in the Administration Tool, or
navigate to the Server: Log page in the Remote Administrator.
196 � Chapter 10

Timestamp: The date and time on which the logged event or message was
generated.

Server ID: The server for which the logged event or message was generated.
(The value shown is either the machine’s IP address or its name).

Event: The event that prompted the generation of the log entry.

Remote ID: The machine or user with which the server was communicating
when the event occurred. (This machine could be another server or a client
machine.)
Viewing and Managing Logs � 197

Notes: A synopsis of the details surrounding the logged event.

Server Load Log
The Server Load Log offers a summary of the workload being handled by the
servers on the deployment network at a particular moment in time. This log is
helpful in determining whether the number of servers on the network is
sufficient to handle the number of client-side requests.

To view the Server Load Log, click the Server Load Log tab in the
Administration Tool, or navigate to the Server: Statistics page in the Remote
Administrator.
198 � Chapter 10

Timestamp: The date and time on which the logged event or message was
generated.

Server ID: The server to which the client-side user was connected when the
logged event or message was generated. (The value shown is either the
machine’s IP address or its name).

Uptime: The number of milliseconds that have passed since the server has been
active.

Avg1Min: The average number of client and server requests processed by the
server since it has been active. (The value indicates number of requests per
minute.)

Avg5Min: The average number of client and server requests processed by the
server since it has been active. (The value indicates number of requests per five
minute interval.)

Avg30Min: The average number of client and server requests processed by the
server since it has been active. (The value indicates number of requests per
thirty minute interval.)
Viewing and Managing Logs � 199

Configuring Log Generation and Storage
You can configure how logs are compiled in the Remote Administrator. Cluster
logging properties are set at the Server: Cluster Configuration: Status Logging
page, and individual server logging properties are set at the Server: Server
Configuration: Status Logging page. While logging properties can be set at both
the cluster and server levels, it is recommended that logging behavior is first set
at the cluster level, followed by server-level tweaking.

Since all deployment servers are generating their own respective logs, it is ideal
that these logs are all combined and stored in the same location.
DeployDirector allows the storing of logs either locally as a flat data file, or
centrally in a JDBC-compliant database. This structure ensures access to all
server logs, regardless of the server to which the Administration Tool is
connected. Setting up this structure is achieved by defining logging properties
strictly at the cluster level.

Later in this section, you will be shown which logging properties can be set at
the server level to override cluster-level settings. For background information
on setting cluster and server properties in general, please refer to Servers and
Server Clusters in Chapter 3, Managing Servers and Clusters.

Configuring Logging Methods
DeployDirector supports two types of logging methods: local logging and
cluster logging. Enabling local logging results in all deployment servers storing
logs locally, with replication to all other servers on the deployment network.
(The log replication process is similar to the one used during bundle
replication.) Enabling cluster logging results in all server logs being stored
directly in an external database.
200 � Chapter 10

When an organization uses more than one deployment server, it is important
that logging properties are set correctly, ensuring that all logs are properly
combined or replicated. Updating the data source (whether a local aggregated
log, or a central database) can be performed at set intervals, instead of every
time a new log entry is generated. This batching of log entries frees up system
resources.

If local logging is enabled, setting aggregate logging properties (i.e. Aggregate
Start Date, and Aggregate Interval) ensures that locally logged information is
combined with the other server logs. This is carried out when servers contact
each other at specified times and upload log entries generated since the last
update.

If cluster logging is enabled, setting the JDBC logging properties ensures proper
access to the external database, where all server logs are merged.

Setting local logging to flat file

1. In the Remote Administrator, navigate to the Server: Cluster Configuration:
Status Logging page.

No matter which server the Remote Administrator is connected to, any
saved changes made at the cluster level are replicated to all other
servers that are part of the cluster.

2. Ensure the Local Log check box is enabled (which automatically disables
the Cluster Log check box).

3. Ensure the Log to File check box is enabled (which automatically disables
the Log to Database check box).

Logs are generated
and stored locally.
Once a server's log
has been updated,
its changes are
replicated across
the entire cluster.

Logs are created locally,
but stored in a central area.
When a server's log has
been updated, these
changes are sent there.
Viewing and Managing Logs � 201

4. In the Log Location text field, verify or enter a new path to which all
servers in the cluster will store logs.

The root of the default value in this field, $(VAULTDIR), is the location of
the DeployDirector installation on the server. Changing this location to
another part of the server requires a full, hard coded directory path.

5. In the Aggregate Start Date text field, enter the value that indicates the date
and time on which log aggregation will begin. (Please refer to the section
entitled Administration Tool Date and Time Entry Formats in Chapter 2,
Introduction of the Administrator’s Guide for a list of valid values.)

6. In the Aggregate Interval text field, enter the value that indicates how often
the server will notify other servers in the cluster that it has new log entries to
share.

Now that these two properties have been defined, the deployment
servers will begin sharing log entries with each other at the specified
time intervals.

7. If desired, continue to set other logging properties, which include those that
affect logging limits, and log writing frequency.

8. Click Set Configuration to save changes, then restart the server.

Setting cluster logging to a JDBC database

1. Start the database server.

2. Ensure that a JDBC driver for that database is available to DeployDirector
(e.g. if are you using Tomcat, drop the JAR into the /lib directory of your
DeployDirector installation).

3. In the Remote Administrator, go to the Server: Cluster Configuration:
Status Logging page to display cluster level logging properties.

No matter which server the Remote Administrator is connected to, any
saved changes made at the cluster level are replicated to all other
servers that are part of the cluster.

4. Ensure the Cluster Log check box is enabled.

Setting this property enables cluster logging. Since cluster logging
results in log writing to an external database, you need to set some
pertinent JDBC settings.

5. Ensure the Log to Database check box is enabled (which automatically
disables the Log to File check box).

6. In the JDBC Driver text field, enter the name of the JDBC driver.

Setting this property may not be required if a JDBC driver has already
been loaded as part of the servlet or Web server environment.
202 � Chapter 10

7. In the JDBC URL text field, enter the URL used to connect to the
database.

The name of the database in which DeployDirector will create data
should be included in the URL.

For example, entering jdbc:sybase:Tds:YourMachine:4000/YourDB
instructs DeployDirector to connect to a Sybase database, connect to a
machine named YourMachine on port 4000, and to create all required
tables in the YourDB database.

8. In the JDBC User and JDBC Password text fields, enter the login user name
and password for a user with table creation and update permissions for the
database.

9. If desired, continue to set other logging properties, which include those that
affect logging limits, and log writing frequency.

10. Click Set Configuration to save changes, then restart the server.

Once cluster logging has been enabled, JDBC information has been set and the
changes have been committed to the server, log entries are written to the
central database on the fly as they are generated.

Configuring Logging Limits
When local logging is enabled (i.e. the Local Log check box is enabled on the
Server: Cluster Configuration: Status Logging page), logs are aggregated and
stored on each deployment server. By default, logs are held for a maximum of
30 days before being deleted, as long as the defined minimum of 500 log entries
exists. Additionally, servers store a maximum of 1000 logs, regardless of how
old they are, to facilitate log management during heavy deployment periods.

These default properties can be set at the cluster level to match your
organization’s needs. (For example, you may want to increase the maximum
number of logs and the length of time they are kept if your servers deploy
bundles frequently.)

Setting cluster level log limit properties

1. In the Remote Administrator, navigate to the Server: Cluster Configuration:
Status Logging page and locate the Log Limits property text fields.

No matter which server the Remote Administrator is connected to, any
saved changes made at the cluster level are replicated to all other
servers that are part of the cluster.

2. In the Minimum Size text field, enter the minimum number of log entries
required before they are deleted.
Viewing and Managing Logs � 203

3. In the Maximum Size text field, enter the maximum number of log entries
that can be stored on a server.

4. In the Maximum Age text field, enter a value that represents the amount of
time a log entry is kept before being deleted. (Please refer to Administration
Tool Date and Time Entry Formats in Chapter 2, Introduction for a list of
valid values.)

5. Click Set Configuration to save changes, then restart the server.

Once changes have been committed, the settings made will be
replicated to all other servers in the cluster.

Configuring Log Writing Frequency
Whether local or cluster logging is used, all events and errors that are part of the
Client Log or Server Log are written to them. Log entries written to a JDBC
database are done so immediately, while those destined for a local flat file are
batched and written at defined intervals.

In the case of the Clients database and the Server Load Log, the frequency of
log writing depends on the defined frequency of their respective “snapshots.”
This can be defined by configuring the Clients Logging and Load Logging,
respectively, using the Remote Administrator. More frequent snapshots offer
more information; however, to reduce overhead, you can take infrequent
snapshots, or disable either log altogether.

Setting the frequency of snapshots for the Clients database

1. In the Remote Administrator, navigate to the Sever: Cluster Configuration:
Status Logging page and locate the Clients Logging property text fields.

No matter which server the Remote Administrator is connected to, any
saved changes made at the cluster level are replicated to all other
servers that are part of the cluster.

2. In the Update Start Date text field, enter the value that indicates the date
and time on which the Clients database will be updated for the first time.
(Please refer to Administration Tool Date and Time Entry Formats in
Chapter 2, Introduction for a list of valid values.)

3. In the Update Interval text field, enter the value that indicates how often
the Clients entries are written to the database.

Entering a value of -1 disables any writing to the Clients database.

4. Click Set Configuration to save changes, then restart the server.
204 � Chapter 10

Setting the frequency of snapshots for the Server Load Log

1. In the Remote Administrator, navigate to the Server: Cluster Configuration:
Status Logging page and locate the Load Logging property text field.

No matter which server the Remote Administrator is connected to, any
saved changes made at the cluster level are replicated to all other
servers that are part of the cluster.

2. In the Log Frequency text field, enter the value that indicates how often a
snapshot of the server’s current load is taken. (Please refer to
Administration Tool Date and Time Entry Formats in Chapter 2,
Introduction for a list of valid values.)

3. Click Set Configuration to save changes, then restart the server.

Overriding Cluster Logging Settings for a Server
Configuring logging properties is normally done at the cluster level. However,
you can also set certain properties for individual servers, which effectively
overrides the equivalent cluster level setting.

To set logging properties for a particular server, connect to it with the Remote
Administrator, and configure properties on the Server: Server Configuration:
Status Logging page, exactly as you would cluster properties.

At the server level, you can set and override cluster-level settings for:

� local log file locations (for local logging configurations)

� server aggregation intervals (for local logging configurations)

� Server Load Log and Clients database writing frequency

� logging limit properties.

Typically, overriding cluster-level settings with server-specific ones occurs when
differing server hardware specifications (e.g. free hard drive space) need to be
balanced out.

Overriding where the logging file is stored

1. In the Remote Administrator, navigate to the Server: Server Configuration:
Status Logging page.

2. In the Log Location text field, enter the path on which logs are to be stored
for this particular server.

The path set at the cluster level is overridden. When you restart the
server, logs will be stored at the specified path.

3. Click Set Configuration to save changes, then restart the server.
Viewing and Managing Logs � 205

Overriding how often a server aggregates logs

1. In the Remote Administrator, navigate to the Server: Server Configuration:
Status Logging page.

2. In the Aggregate Start Date text field, enter the value that indicates the date
and time on which log aggregation will begin for that particular server.
(Please refer to Administration Tool Date and Time Entry Formats in
Chapter 2, Introduction for a list of valid values.)

3. In the Aggregate Interval text field, enter the value that indicates how often
the server will notify other servers in the cluster that it has new log entries to
share.

Now that these two properties have been defined, the deployment
servers will begin sharing log entries with each other at the specified
time intervals.

4. Click Set Configuration to save changes, then restart the server.

Overriding the frequency of Clients database snapshots

1. In the Remote Administrator, navigate to the Server: Server Configuration:
Status Logging page and locate the Clients Logging property text fields.

2. In the Update Start Date text field, enter the value that indicates the date
and time on which the Clients database will be updated for the first time.
(Please refer to Administration Tool Date and Time Entry Formats in
Chapter 2, Introduction for a list of valid values.)

3. In the Update Interval text field, enter the value that indicates how often
the Clients entries are written to the database.

Entering a value of -1 disables any writing to the Clients database.

4. Click Set Configuration to save changes, then restart the server.

Overriding when server load logs are sent

1. In the Remote Administrator, navigate to the Server: Server Configuration:
Status Logging page, and locate the Load Logging property text field.

2. In the Log Frequency text field, enter the value that indicates how often a
snapshot of the server’s current load is taken. (Please refer to
Administration Tool Date and Time Entry Formats in Chapter 2,
Introduction for a list of valid values.)

3. Click Set Configuration to save changes, then restart the server.

Overriding logging limit properties

1. In the Remote Administrator, navigate to the Server: Server Configuration:
Status Logging page, and locate the Log Limits property text fields.
206 � Chapter 10

2. In the Minimum Size text field, enter the minimum number of log entries
required before they are deleted.

3. In the Maximum Size text field, enter the maximum number of log entries
that can be stored on a server.

4. In the Maximum Age text field, enter a value that represents the amount of
time a log entry is kept before being deleted. (Please refer to Administration
Tool Date and Time Entry Formats in Chapter 2, Introduction for a list of
valid values.)

5. Click Set Configuration to save changes, then restart the server.

Directing Email Error Reports
Server and Client Logs record, among other items, any errors that have
occurred during the deployment process on either the client or server side.
Since the timing of dealing with deployment errors is more important than
viewing other log entries, DeployDirector can be configured to send an email
report to any number of recipients whenever an error occurs.

The contents of an email error report is identical to that which is placed in a
Client Log or Server Log. Even when error email reports are sent out, that
information is still logged for future reference.

Recipients can be set by entering email addresses under the Error property
node in the Administration Tool.

There are four types of errors, of which any combination can be sent to users:

client.local errors pertain to problems experienced by client machines.

client.connection errors pertain to problems experienced by client machines
while connecting, or attempting to connect to a server.

server.local errors pertain directly to the server (e.g. the server was not able to
read or write a file in the vault).

server.connection errors pertain to server-server communication problems.

Configuring Email Error Logging at the Cluster and Server
Level
Email error logging can be set for the entire cluster, or particular servers, using
the Remote Administrator. Whereas logging properties at the server level
override the settings of the same property at the cluster level, server and cluster-
level email error report settings are combined.
Viewing and Managing Logs � 207

How cluster and server level email error logging properties are set and
combined depends entirely on who in your organization is responsible for the
maintenance of its deployment network.

As a general rule, if the scope of your deployment network is small enough that
system administrators are responsible for all servers, email error logging
properties should be set at the cluster level. However, if the geographic scope of
your deployment network is regional, national, or even international, it is likely
that different system administrators are responsible for maintaining different
servers. If this is the case, error logging properties should be set at the server
level; each individual server is configured to send email error reports to the
appropriate system administrator.

To set up email error logging, you will need to enter outgoing mail server
information, as well as recipient email addresses.

Setting email error recipients at the cluster or server level

1. In the Remote Administrator, navigate to the Cluster: Server Configuration:
Error Emailing page, or the Server: Server Configuration: Error Emailing
page, depending on whether the settings are meant to affect the entire
cluster or the server to which the Remote Administrator is connected.

For cluster-level settings, no matter which server the Remote
Administrator is connected to, any saved changes made at the cluster
level are replicated to all other servers that are part of the cluster.

2. In the “From” Account: Username text field, enter the login user name for
the mail server.

3. In the “From” Account: Password text field, enter the login password for the
same mail server.

4. In the “From” Account: Server text field, enter the name of the outgoing
mail server.

Once the outgoing email server properties are configured, a recipient
node must be created for every person who is supposed to receive a
copy of generated email error reports.

5. In the “To” Account: Address text field, enter all of the recipients full email
addresses, separated from each other with spaces.

6. Select the appropriate Notification Levels check boxes, which represent the
types and levels of error emails you want the recipient(s) to receive.

7. If necessary, repeat steps 5 and 6 for other groups of users who require
different notification settings.

8. Click Set Configuration to save changes, then restart the server.
208 � Chapter 10

Any properties set at the cluster level will be replicated across the
cluster.
Viewing and Managing Logs � 209

210 � Chapter 10

 Chapter 11
Customizing Functionality with the SDK

any sites find that the DeployDirector Administration Tool provides
all the control they need for the distribution and update of their
applications. However, some capabilities are only possible by

making changes to an application (such as adding a “Check For Updates” item
to your Help menu) or by replacing some of DeployDirector’s own
functionality (to use your site’s authentication system, for example). This is
where the DeployDirector SDK comes in.

The DeployDirector SDK is provided for software developers and build
personnel. It contains classes, source code, examples, and applications that
enable developers to access DeployDirector from their applications and extend
DeployDirector’s authentication, authorization, and security modules.

This chapter assumes the reader is familiar with DeployDirector concepts and
terminology.

M

Customizing Functionality with the SDK � 211

Deploying the SDK Files to Your Workstation
The DeployDirector SDK is packaged as a bundle in the vault that ships with
the product. To begin using it, deploy it to your local workstation.

With the server running, the SDK can be deployed from either the
DeployDirector Administrator’s Page, or by entering a URL in a browser, for
example:

http://[your host name]:8080/servlet/deploy/ddsdk/install

(Replace “[your host name]” with the name of the machine running the
DeployDirector server; the URL may also vary depending on your
configuration.)

When prompted, enter your admin user name and password (“ddadmin” and
“f3nd3r” by default). Follow the install applet prompts to specify where to
install the SDK files on your system.

Overview of SDK Components
When the install has finished, the files and directories shown below are
available on your computer.

Conceptually, the SDK consists of the components described in the following
sections.

JAR files

SDK documentation

SDK example code and tutorial application

source code for built-in implementations
212 � Chapter 11

http://localhost/servlet/deploy/DDSDK/install

Client Application Classes (ddcam.jar)
A Java class library containing GUI components and other classes is provided
for developers to use in their applications. DeployDirector features available to
developers include:

� providing an “update application” GUI for users

� automatically checking for and selectively updating an application at any
time during its execution, complete with user authentication and version
authorization

� responding to Install and Server events triggered by DeployDirector

� automatically updating non-Java parts of the application

ddcam.jar is located in DDsdk\lib. End-user classes are located in the
com.sitraka.deploy package.

Sample code is located in DDsdk\examples.

Documentation is located in this chapter and DDsdk\docs\api; can be accessed
on Windows using the Start menu group created for the SDK.

Getting Started with the Client Application Classes

Like any third-party code library, a few basic steps are needed before you can
add DeployDirector capabilities to your application:

1. Add the ddcam.jar file to your application’s CLASSPATH.

2. Import the classes to be used by your application, for example:
import com.sitraka.deploy.*;
import com.sitraka.deploy.authentication.*;

3. Write code that implements the features described in this chapter in your
application, using the documentation in this chapter and the Javadoc API
reference documentation for guidance.

Testing and Debugging Note: Because most of the features provided by the client
application library involve communication between the application and a
running DeployDirector server and CAM, testing and debugging can be a bit
tricky to set up. We recommend installing the standalone server on your local
workstation, using the administration tool to create a test bundle for your
application, deploying it to your workstation, and running it that way. This
enables you to verify that your application’s interaction with DeployDirector is
working correctly.
Customizing Functionality with the SDK � 213

Copy of SAM JAR (ddsam.jar)
A copy of the server-side application manager (SAM) classes is provided for
developers to use when a site-specific authentication, authorization, or security
module is needed. Using the source code and documentation provided, you can
develop a unique module and add it to the DeployDirector SAM.

ddsam.jar is located in DDsdk\lib.

Source code for built-in modules is located in DDsdk\src.

Documentation is located in this chapter and DDsdk\docs\api; can be accessed
on Windows using the Start menu group created for the SDK.

Getting Started with the SAM JAR

Adding site-specific modules to the SAM is a fairly involved process. Use the
source code as a basis for your subclassed module. It, along with the
documentation in this chapter and the Javadoc API reference, provides
guidance on this process.

SDK Java Packages and API
The following table summarizes the Java packages that are part of the SDK:

Package Summary

com.sitraka.deploy Provides classes and interfaces for adding deployment,
updating, and version-checking functionality to any
application. Also contains interfaces needed for custom
authentication, authorization, and security modules.

com.sitraka.deploy.authentication Contains classes that perform any user authentication
needed by an application (both client and server side).
Source code is provided as examples and to use as a base
for subclassing to create new authentication modules.

com.sitraka.deploy.authorization Contains classes that determine which products and
versions a user is authorized to use. Source code is
provided as examples and to use as a base for
subclassing to create new authorization modules.

com.sitraka.deploy.ssl Code that performs secure transmission of user
authentication information (and even of deployed
bundles). Included primarily as examples for users to
replace with site-specific secure-socket implementations.
Applications should not use these classes directly.
214 � Chapter 11

Adding Update Checking To Applications
For many applications and types of users, system administrators want to control
precisely when and how users update their applications. Bundle configuration
properties accessed in the administration tool allow them to do this.

However, end-users of your applications often appreciate the ability to check
for new versions and upgrade the application at their own convenience.
Popular or commercial software often provides automatic features as part of the
application. DeployDirector enables you to provide this kind of feature to users
of your applications very easily.

The most common way to provide this feature to users is by adding a “Check
for Updates” item to the help menu of the application.

Tip — You can avoid changing your code but still provide end-users with the
ability to initiate update checks. When creating the bundle, you can add a
shortcut that checks for updates (Install Data | Shortcuts node in the
administration tool). This isn’t as visible as a menu item right within the
application however.

DeployDirector provides three classes that provide this feature, each useful for
a particular situation. All are located in the com.sitraka.deploy package.

CAMMenuItem and CAMJMenuItem are menu item subclasses that have built-in
actions defined that access the DeployDirector CAM to check for updates to the
application.

CAMAction is a Swing Action object that can handle update checks invoked
from either menu items or toolbar buttons.

Important Note for Bundles

Because adding this feature changes how updates can occur, you should
consider adjusting some of the properties in the bundle. By default,
DeployDirector initiates checks and updates automatically.

You can use the administration tool to change the connection and update
behavior of the bundle. For example, to leave the onus on users to check for
and update their application, set the Connection | Connect to Server
property to “User Initiated”, and the Update | Policy property to “Optional”.

A Typical User-Update Feature
provided in the Help Menu
Customizing Functionality with the SDK � 215

CAMMenuItem and CAMJMenuItem Classes
CAMMenuItem is an AWT-based MenuItem, and CAMJMenuItem is a Swing-
based JMenuItem. This makes it easy to add them to any menu. Once added to
a menu in your application, the component’s event-handling mechanism uses
the CAM to query the DeployDirector server when the menu item is selected
by a user.

The following code fragment shows how to add this item to an AWT
application menu:

 import com.sitraka.deploy.CAMMenuItem;

 Menu application_menu;
 CAMMenuItem updateCheck_item;
 ...
 // Add CAMMenuItem to the Application Menu
 updateCheck_item = new CAMMenuItem();
 application_menu.add(updateCheck_item);

Example code that uses the CAMMenuItem and CAMJMenuItem classes is
included in the SDK, located in the DDsdk\examples\updatecheck directory
(specifically versions 1.0.0 and 2.0.0).

To run or test these examples, you need to create bundle versions using these
source files. Then deploy the program and run it.
216 � Chapter 11

CAMAction Class
The CAMAction class provides a general way to check for updates from any
menu item or toolbar button. CAMAction implements the Swing Action
interface. This mechanism is particularly useful when you want to provide more
than one way to check for updates within your application.

The following code fragment demonstrates using one CAMAction instance to
handle update-checking from both a menu item and a toolbar button:

 import com.sitraka.deploy.CAMAction;

 JMenu application_menu;
 JMenuItem button_item;
 JToolBar tool_bar;
 CAMAction cam_action_item;

 ...
 //create the Application Menu
 application_menu = new JMenu("Application");
 menu_bar.add(application_menu);

 //add a MenuItem for CAMAction
 cam_action_item = new CAMAction();
 application_menu.add(cam_action_item);

 //create the toolbar
 tool_bar = new JToolBar();

 //add CAMAction to the toolbar
 tool_bar.add(cam_action_item);

Example code that uses the CAMAction class is included in the SDK, located
in the DDSDK/examples/updatecheck directory (specifically versions 3.0.0 and
4.0.0).
Customizing Functionality with the SDK � 217

Advanced Update Checking for Applications
The CAMAccess class enables an application to implement version checking
and updates in a completely different fashion than that provided by
DeployDirector’s menu item or CAMAction classes. Using CAMAccess, an
application can:

� check for updates on its own, without being initiated by the end-user

� present its own “updates” dialogs and user interface for end-users

� implement specific update-handling for an application (such as never to
allow a user to update to a “.0” release (such as “2.0.0”))

The methods in CAMAccess cover every step in the update process. The ones
you need to use depend on what you’re trying to do. The following table groups
the methods in CAMAccess in the general order you might use them when
implementing a new update mechanism in your application.

Other Useful CAMAccess Methods
The CAMAccess class also provides methods that are not related to checking or
updating applications. For example, the displayDocument method enables
your application to display a web page in the system’s default web browser.
This can be useful for release notes or even for quick online documentation for
your application.

Please see the Javadoc API reference for complete details on using the
CAMAccess class.

Stage CAMAccess methods

Initialization getErrorStream()
isApplicationRunning()
isGUI()

Checking for Update getServerList()
listRunningCAMS()
checkForUpdates()

Controlling the Update getCurrentVersion()
getAuthenticationObject()
queryUserAboutInstallingUpdate()
queryUserToSelectVersion()
getUpdatePolicy()
getUpdateType()

Updating the Application updateBundle()
updateBundle(version)
218 � Chapter 11

Client-Side and Server-Side Authentication
Authentication is the process of determining whether a user is who they claim
to be. Authentication is the first part of the process of controlling access to
DeployDirector bundles (authorization, described in the next section, is the
second part).

Programmatically, authentication and authorization have been modularly
implemented in DeployDirector, allowing you to plug in classes whose
properties best match your deployment environment and needs.

For more background information on authentication and authorization,
including a description of the modules/classes, please see An Overview of User
Authentication and Authorization in Chapter 9.

The following diagram provides an overview of the classes that perform client-
side authentication in DeployDirector.

The following diagram provides an overview of the classes that perform server-
side authentication in DeployDirector.
Customizing Functionality with the SDK � 219

Custom Authorization Modules
Once a user has been authenticated, DeployDirector authorizes that user to
access particular bundles and versions. Two basic authorization systems are
provided with DeployDirector — one that authorizes anybody to access any
version of any bundle, and one that authorizes users to only access the bundles
specified in an internal data file (the administration tool is used both to specify
the authorization method, and to enter user/bundle/version authorization data).

This system works well for most sites. Unlike authentication (which accesses
external standard user account systems), authorization data is typically specific
to DeployDirector, and does not generally access external site-specific
databases. However, as DeployDirector becomes more widely-used at a site, it
may be advantageous to store and access authorization data centrally.

DeployDirector enables you to create and plug in a custom authorization
module. Authorization set up is done for one vault, so large sites that maintain
multiple servers and vaults would need to copy or duplicate authorization data.
In this case it may be better to create a central database and use a custom
authorization module to access it using JDBC.

For more background information on authentication and details on specifying
authentication for bundles, please see the DeployDirector Administrator’s Guide
chapter on “Authentication and Authorization”.

Overview of the com.sitraka.deploy.authorization Package
The com.sitraka.deploy.authorization package implements the
authorization modules built in to DeployDirector.

All authorization modules implement the
com.sitraka.deploy.Authorization interface, which defines the
methods the SAM calls to administer (define and edit) authorization data, and
to perform authorization requests made by a CAM.
220 � Chapter 11

The AuthorizeAll class is extremely simple — because it simply returns
“AUTHORIZED” for any request, it neither uses any data file, nor provides
authorization editing.

The DefaultAuthorization class is probably better to start with — it
provides a simple but complete authorization system. It stores and manages
authorization data in a flat text file, and provides a GUI editor to allow
administrators to specify and edit authorization information in the
administration tool.

The Version class encapsulates a number of useful conventions for specifying
and managing versions.

The source code for all of the classes in the authorization package is provided in
the DDsdk\src\authorization directory of where you installed the SDK.
Javadoc API reference documentation is installed with the SDK, and is also
provided later in this chapter as a convenience.

Creating a New Authorization Module
The first step in creating a custom authorization module is to choose whether to
base it on AuthorizeAll or DefaultAuthorization. One of these
approaches probably matches your needs more closely than the other.

Next, consider whether to extend and override one of the built-in modules, or
start entirely from scratch (with your class implementing the Authorization
interface). Subclassing a built-in module makes sense when you only need to
change a small part of how one of the built-in modules work, for example, to
use a database for authorization information. Creating a new module from
scratch makes sense when you need something entirely different, such as
entirely different set of rules for version specification.

In either case, use the source code for the built-in modules as a starting point.

Basic Authorization Assumptions
� Authorization modules assume any authorization requests are made by

valid users, since authorization in DeployDirector takes place after user
authentication.

� While there is no direct dependency on the user authentication used, the
user ID is a piece of information common to both; the authentication and
authorization methods should handle user IDs in the same way. For
example, if your authentication method does not use user IDs (such as
ClientAuthenticateAll), it does not make sense to use an authorization
module that checks user IDs.

� Authorization functions take place in the SAM. There are two parts to an
authorization module: handling authorization requests from a CAM (is this
Customizing Functionality with the SDK � 221

user authorized to access this), and managing authorization data (adding
user / version data in the administration tool).

Authorization-Handling Methods

The following table provides notes for implementing the
com.sitraka.deploy.Authorization interface methods that handle
authorization requests:

Method Implementation Notes

isAuthorized(user_id,
app_name, version)

Performs authorization — this is the key method,
Examines the parameters specified, and determines
whether it is authorized. Returns AUTHORIZED or
NOT_AUTHORIZED (defined in Authorization interface).
The user ID cannot be null. If null is specified for the
application or the version, it is taken to mean “any”.

usesDataFile

setDataFile(data_file)

File handling methods. In the DefaultAuthorization
module the user/application version data is stored in the
file specified by data_file.
The authorization module does not know the details of
filename and location (this is handled by the SAM), so if
your custom module uses a database, data_file should
contain information your module will use to access the
database.
The setDataFile method is called for every
authorization request, and it triggers reloading of the data,
so take care to load the file efficiently.
222 � Chapter 11

User / Version Data Editing Methods

The following table provides notes for implementing the
com.sitraka.deploy.Authorization interface methods that handle
editing user / application version information in the administration tool:

When authorization data is edited while the server is running, the GUI editor
needs a way to get changes back to the authorization module. One way is to
cause user actions in the editor to trigger a resynchronization. Another way is to
have the editor and Authorization module share a data model (this is the
method used by DefaultAuthorization).

Method Implementation Notes

hasEditor

getEditorComponent

Unless authorization data will be edited outside of the
administration tool, you should provide a GUI editor. This
editor allows administrators to add and change user /
application version information.
The authorization module should store and use one
instance of the editor, rather than creating a new editor
each time the getEditorComponent method is
called.

isModified

commitChanges

Tracks whether the data has actually changed. Use this to
avoid sending the data file to the server every time the
editor is invoked.
The commitChanges method is called by the
administration tool as a user edits user/application
version data.
Customizing Functionality with the SDK � 223

Using Secure Socket Encryption
DeployDirector can automatically encrypt all data sent between servers and
client desktops. This is useful in any situation where data may be transferred
over a public network, such as the Internet. DeployDirector enables you to use
virtually any third-party Java-based encryption technology, but no encryption
technology is built into the product. This is because the transfer of encryption
technology between countries is often controlled by government export
regulations.

For more background on encryption in general, and DeployDirector’s security
features, please see:

� RSA’s Frequently Asked Questions about Today’s Cryptography —
http://www.rsasecurity.com/rsalabs/faq/

� The chapter on “Security and Integrity.”

Support is fully implemented for Sun’s Java Secure Socket Extension (JSSE)
encryption. Starting implementations are provided as source code for other
popular Java-based encryption libraries. This enables non-U.S. companies to
use unrestricted encryption technology, or enables anyone to plug-in the SSL
(secure sockets layer) library of their choice.

Note: It may not be necessary to use DeployDirector’s encryption features. If
your site’s internal and/or external network gateways are set up to encrypt
HTTP data where necessary, authentication and deployed application data will
be encrypted the same as any other HTTP data over these gateways.

Overview of the com.sitraka.deploy.ssl Package
The com.sitraka.deploy.ssl package contains support for the
encryption systems that DeployDirector can use.

These can be thought of as “bridge” classes that enable you to “plug-in” a
particular Java-based encryption system. All of these classes implement the
com.sitraka.deploy.SSLFactory interface, which defines the methods
DeployDirector calls to work with the third-party encryption system.
224 � Chapter 11

http://www.rsasecurity.com/rsalabs/faq/

Using these classes, you can implement one of the supported encryption
systems for your application. It is also possible to write your own “bridge” class
to use a site-specific encryption system.

Using JSSE, SSL-J or IAIK Encryption
To use one of the encryption systems supported by DeployDirector, you need
to add the particular SSL library to both the CAM and SAM, and specify the
name of the “bridge” class using the administration tool. The following
describes this process in detail.

SAM-side:

Either combine the ddsam.jar with the third-party SSL library JAR, or add the
SSL JAR to the Classpath of the server. Restart the server and use the
administration tool to do the following:

1. Specify the name of the “bridge” class by editing the
deploy.http.sslsocketfactory property located on the http node of the Server
tab. Example settings:
com.sitraka.deploy.ssl.JSSE
com.sitraka.deploy.ssl.SSLJ
com.sitraka.deploy.ssl.IAIK
Customizing Functionality with the SDK � 225

CAM-side (using the administration tool):

1. Create a new version of the “ddcam” bundle.

2. Add the third-party SSL library JAR files to the CAM bundle’s Classpath
object (located on the Platform All > Java > Classpath node of the Bundles
tab).

3. Specify the name of the “bridge” class by adding the following System
Property (located under the Install Data node on the Bundles tab):
Name: deploy.http.sslsocketfactory
Value: name of bridge class, for example com.sitraka.deploy.ssl.JSSE

In all cases, the prerequisite is to obtain the SSL library from the third-party
vendor.

Using a Site-Specific Encryption System
In some cases you may want DeployDirector to use an entirely different SSL
library. To accomplish this requires creating a class that provides a “bridge”
between the third-party SSL library, and DeployDirector. Creating a “bridge”
class that DeployDirector can use to access your site’s encryption system is
fairly straightforward. The source code for the default SSL systems is provided
in the DDsdk\src\ssl directory; use this as a starting point.

The key to creating an implementation that will work with DeployDirector is to
implement the com.sitraka.deploy.SSLFactory interface, which
defines the methods DeployDirector calls to work with the third-party
encryption system.

The class you create must provide a no-argument constructor.

Once created, add the third-party SSL library and your “bridge” class as
described in “Using JSSE, SSL-J or IAIK Encryption” on page 225.

Notes on Firewalls, Proxies, and SOCKS DeployDirector can use encryption with
firewalls, as long as the SSL implementation used has a constructor that takes
an already-established socket, or the bridge class implements the
startSSLHandshake() method. This is because DeployDirector first creates
its own connection, possibly going through SOCKS or HTTP proxies, and only
then invokes the SSL handshake. If the SSL implementation does not provide
one of these methods, the connection will not work through proxies.

Certificates and SSL in Java SSL connections require certificates to validate the
remote site. You may need to install other root certificates into the JRE you are
using in order to use root certificates from other signers (such as Entrust). The
documentation for “keytool” describes how to do this, located at http://
java.sun.com/products/jdk/1.2/docs/tooldocs/win32/keytool.html .
226 � Chapter 11

http://java.sun.com/products/jdk/1.2/docs/tooldocs/win32/keytool.html
http://java.sun.com/products/jdk/1.2/docs/tooldocs/win32/keytool.html

Index
A
AbstractAuthentication 157
AbstractClientHTTPAuthentication 156
Add Files dialog 72
adding

a server to a cluster 51
bundles to the vault 68, 69
cross-platform files 73
directories 73
files to a bundle version.xml 72
JRE to server 46
Unix files 74
Windows files 74

administration tool
installation 30
introduction 29
listing JREs 34
working with bundles 32, 67

administrator roles 183
administrator’s guide, overview 27
Administrator’s Page 36
API overview 214
AuthenticateAll 156
authentication 109, 153, 155

allowing for all users 112
requiring information 113, 114
Unix users 115, 122
Windows users 116

authorization 109, 153, 155
all users 118
class customization 192
setting user and group 181

AuthorizeAll 157
Avg1Min log field 199
Avg30Min log field 199
Avg5Min log field 199

B
Bundle Name log field 194, 196
Bundle Version log field 194, 196
bundles

adding files to 71
adding to the vault 68, 69
CAM installation 38
copying from a local source 70
copying from the server 70
file contents 71
installation options 91, 96
overview 32, 67

removing 69
replication 44
setting authentication properties 111
setting authorization properties 111, 159
setting the install directory 96
update creation 63
updating 133, 136

Bundles tab 32, 67

C
caching 63
CAM

overview 37
roles 37

CAMAction 217
CAMJMenuItem, overview 216
CAMMenuItem, overview 216
class loader 107
client application library, overview 213
Client ID log field 194, 196
Client Log 195
client.connection error type 207
client.local error type 207
ClientAuthenticateAll 155
ClientAuthentication 155
Clients database 193
ClientSerialNumber 155
client-side installation

from a CD-ROM 142
via a Web browser 77

client-side update process 133, 136
ClientUsernamePassword 155
cluster logging 200
cluster properties 53
cluster.properties file 48
clusters 47

adding a server 51
configuring error repoting properties 207
removing servers 52
setting properties 50
viewing servers in 50

committing changes to server 31
connection

mandatory 134
scheduled 135
setting properties 134

connection policy 133
Connection property node 133, 136
copying bundles 70
cross-platform files
227

adding 73

D
DAR

DAR creation tool 148
file format 142

DAR creation tool 148
data validation 132
ddcam.jar, overview 213
ddsam.jar, overview 214
DefaultAuthorization 158
DefaultEditor 158
deploying SDK 212
deployment process 42
desktop shortcuts 96
directories

adding to bundle’s file structure 73

E
Entry Points property node 103
entry points, defining 103
error page 83
error reporting 53
error reportings 207
error reports 193
errors, reporting 94, 108, 195
Event log field 196, 197
exception handling 108, 195

F
FAQs 40
files

adding to bundles 71
removing 75

firewalls and SSL 226
flat file logging 200

H
Host property node 51, 52

I
Initial User ID log field 195
Initial Version log field 195
Install Date log field 195
install directory configuration 96
install page 81

customizing 82
installation

client-side process from a CD-ROM 142

client-side process via a Web browser 77
options for bundles 91, 96, 101
setting up an installation CD 143

installer applet 77
re-signing 78

InstallEvent class 101, 146
installing SDK 212
InstallListener class 101

J
JAR differencing 63
Java packages, overview 214
JDBC 202
JDBC logging 200
JNDIAuthentication 156
JNDIEditor 157
JRE

adding to server 46
listing server-based 34
setting properties for a bundle 105

L
Last Client IP log field 195
Last Connection log field 195
launch page 81

customizing 82
launch request 80

passing URL parameters 84
license file

designating 92
local logging 200
log

client list 193
server 196
server loads 198

Log property node 201, 202
logging 53, 193

aggregation 206
cluster 200
configuring 200
configuring for flat file 201
configuring for JDBC 202
file storage 205
local 200
setting at server level 205
setting frequency 204
setting limits 203

logs
client 195
replication 44
viewing 35
228 � Index

M
MD5 hash code 132

N
Notes log field 196, 198

O
output 94, 108, 195
overview of SDK 212

P
Platform node 71
Platform tab 34, 71
property node

Connection 136
Entry Points 103
Host 51, 52
Log 201, 202
Platform 71
Shortcuts 96
Update 133, 136
Vendor 96
Windows Registry 95

proxies and SSL 226
proxy configuration 84

R
readme file, designating 93
refresh server 179, 191
registry entries for Windows 95
Remote ID log field 197
removing

bundle files 75
server from a cluster 52

removing a server from a cluster 52
removing bundles 69
replication 44, 47

S
SAM

overview 41
roles 41

SDK, deploying 212
SDK, overview 212
security 126
SerialNumberEditor 156
server

adding JRE 46

updating 31
server hosts

defining at cluster level 57
defining at server level 57

Server ID log field 196, 197, 199
Server Load Log 198
Server Log 196
server properties 53
server.connection error type 207
server.local error type 207
server.properties file 48
ServerID log field 194
servers 47

adding to a cluster 51
changing host properties 52
configuring error reporting properties 207

server-server communication 48
server-side library, overview 214
Share VM option 106

effect on class loader 107
Shortcuts property node 96
SimpleAuthEditor 157
SimpleAuthentication 157, 160
SimpleAuthGroups 160
SOCKS and SSL 226
SSL encryption 126
SSLFactory method 129
support

FAQs 40

T
tab

Bundles 32, 67
Platform 34, 71

technical support
FAQs 40

Timestamp log field 196, 197, 199
transfer groups 58

U
Unix files

adding 74
update

mandatory 136
optional 136
properties 135

update checking, adding to an application 215
update policy 133
update properties for bundles 133, 136
Update property node 133, 136
update server 191
updating the server 31
Uptime log field 199
URL parameters
229

passing 84
User ID log field 194, 196
UsernamePasswordEditor 156

V
vault

adding bundles 68, 69
copying bundles 70
removing bundles 69
viewing contents 32, 67

Vendor property node 96
Version 158
version.xml 133, 136
viewing clusters 50
VMs, sharing 106

W
Windows files, adding 74
Windows Registry property node 95
Windows service, using DeployDirector as 66
WindowsAuthEditor 157
WindowsAuthentication 157
230 � Index

	Contents
	Installation and Setup
	Supported Platforms and General Requirements
	Server-Side Requirements and Hardware Considerations
	Administrator Client Requirements
	Client-Side Platform Support and Requirements

	An Overview of DeployDirector Installations
	Installing DeployDirector to Your Server
	Configuring and Running the Server-Side Component
	Configuring and Running the Standalone Server
	Running DeployDirector as a Servlet Engine with an Application Server

	Installed Directories and Location of Key Files
	Accessing the Remote Administrator to Enter Your License
	Invoking the Remote Administrator:
	Changing the DeployDirector license:
	Changing the administrator password for the Remote Administrator:

	Deploying the Administration Tool to a Workstation
	A Note On Supported Browsers
	Netscape Navigator and Microsoft Internet Explorer
	AOL

	Upgrading the DeployDirector Server
	Performing the upgrade manually
	Performing the upgrade using DAR import and export commands
	Post-Installation Notes
	General Upgrade Practices

	Introduction
	Overview of the Administrator’s Guide
	The Administration Tool
	Installing the Administration Tool
	Logging In to the Administration Tool
	Updating the Server
	Committing changes to the server

	Working with Bundles
	Administration Tool Date and Time Entry Formats
	Defining Server-Based JREs
	Viewing Deployment Logs

	The Remote Administrator
	Introduction to the CAM
	CAM Roles

	Technical Support
	Contacting DeployDirector Support
	DeployDirector:
	CAM (Client-side Application Manager) information:
	SAM (Server-side Application Manager) information:
	Third party information

	Contact information
	A Note About Our Transition

	Managing Servers and Clusters
	SAM Roles and Responsibilities
	Server-Side Processes
	The Deployment Process from the SAM’s Perspective
	The Server-Side Management Process

	Bundle and Log Replication
	The Rules of Engagement

	JRE Management
	Adding a new JRE to the vault

	Servers and Server Clusters
	Server-to-Server Messages within a Cluster
	Cluster and Server Properties
	Setting Basic Cluster Properties
	Viewing your server cluster
	Adding a server to a cluster
	Removing a server from a cluster
	Changing a server’s host properties

	The Combined Effect of Server and Cluster Properties
	The Client-Side Visibility of Servers in a Cluster
	Defining server names at the cluster level

	Transfer Groups
	Listing Servers in the Administration Tool
	Adding a new server to the servers list

	Using the Servers List to Compile Transfer Groups
	Creating a transfer group
	Uploading bundles from a server to a transfer group

	The Automatic Creation of Bundle Updates
	Understanding JAR Differencing
	Server Caching
	Setting server-side cache properties

	Running DeployDirector as a Windows Service

	Adding Bundles and Defining Bundle Content
	Making Changes to the Vault
	Adding and Removing Bundles
	Adding new bundles to the vault
	Adding new bundle versions
	Removing bundles
	Rolling back bundle versions

	Basing New Bundles on Existing Bundles
	Copying bundle versions from the server
	Copying bundle versions from the local source

	Adding Files and Directories to Bundles
	Adding individual directories to a bundle’s file structure
	Adding cross-platform files
	Adding Windows files
	Adding Unix files
	Removing files

	Configuring Bundle Installation Properties
	The Deployment of Bundles Via Web Browsers
	Introducing the Installer Applet
	Re-Signing the Installer and Launcher Applets
	Re-signing the installer applet for Netscape
	Re-signing the installer applet for Internet Explorer

	Launching Applications
	The /launch Request

	Customizing the Install, Launch, and Error Pages
	Customizing the install and launch pages
	The Error Page
	Passing URL Parameters to an Application

	Configuring Proxy Settings
	Configuring Browsers to Use Proxy Information
	Deploying with Proxies Present on the Network
	Configuring proxy information in the Administration Tool
	Allowing client side users to configure proxy information

	Passing Cookies to the Installer or Launcher Applet
	Configuring DeployDirector to Pass and Use Cookies
	Enabling cookie passing to the installer or launcher applet automatically:
	Enabling cookie passing to the installer or launcher applet manually:

	Configuring Bundle Installation Properties
	Setting Bundle Install Directories
	Setting Vendor install directory
	Setting Platform-specific install directory

	Designating License and Readme Files
	Designating a license file in a bundle
	Designating a readme file in a bundle

	Determining how Bundles Affect Client Machine Settings
	Setting system properties for a bundle
	Setting CLASSPATH information for a bundle
	Registering and creating Windows registry entries for a bundle

	Configuring End-User Bundle Installation Options
	Permitting users to specify an install directory
	Setting bundle desktop shortcut properties

	Bundle Installation Directories: Creation Strategies
	Enforcing Strict Bundle Installation Paths
	Allowing User-Defined Installation Paths
	Configuring Installation Directories for Use with the Launch Command

	Extending Installation Options with Custom Classes
	Adding the customized class or JAR to the DDCAM bundle and its CLASSPATH
	Specifying the custom class to your bundle

	Configuring Bundle Runtime Properties
	Defining Entry Points
	Designating Bundle Files as Entry Points

	Bundle JRE Requirements
	Checking for JREs on the Client Side
	Setting the JRE properties for a bundle (including VM parameters)

	Sharing VMs Between Multiple Applications
	Sharing VMs: the Effect on the CAM’s Class Loader
	The Share VM Property and the System Class Loader
	Class Verification and Using the -noverify VM Parameter

	Client-Side Exception Handling and Output
	Configuring Standard Exception and Output Destinations

	End-User Authentication and Authorization
	The Authentication and Authorization Process
	Setting Authentication Properties
	Allowing automatic authentication of all users
	Authenticating users by matching server data with client names and passwords
	Authenticating users by matching server data with client serial numbers
	Authenticating users against a directory such as NIS
	Authenticating Windows users based on their login information

	Setting Authorization Properties
	Authorizing all authenticated users
	Authorizing authenticated users based on the contents of a server-side data file:
	Authorizing groups of users based on a server-side data file
	Authorizing groups of users against an NIS directory

	An Overview of Security in DeployDirector
	About SSL and Symmetric Encryption
	How Encryption Is Implemented in DeployDirector
	SSL Support with DeployDirector
	SSL Notes and Encryption Resources

	DeployDirector’s SSL Components
	SSLFactory Method
	Default SSL Implementations
	Proxies, Socks and Firewalls

	Setting DD Encryption
	If Your SSL Library Is Not Supported
	If Your SSL Library Is Supported
	Indicating which SSL security class to use with DeployDirector

	Overview of Data Validation

	Configuring Bundle Update Policies
	The Client-Side Update Process
	Valid Connection Policy Settings
	Setting Bundle Connection Policies
	Setting automatic mandatory client connections to a server on startup
	Scheduling client connections to a server
	Giving the user control over server connections

	Setting Bundle Update Policies
	Making a bundle version a mandatory update
	Making a bundle version an optional update

	The Connection and Update Options from the User’s Perspective
	CAM Update Example: Dependencies Between Bundle Versions
	CAM Update Example: Effects of the Connection Policy
	CAM Update Example: Effects of the Update Policy

	Preparing Bundles and Servers for Deployment
	Committing a Bundle to the Vault
	Preparing Bundles for Manual CD Installations
	An Overview of DARs
	Setting Up an Installation CD
	Saving bundles and the CAM as DARs
	Assembling the necessary DeployDirector and DARs
	Including customized install event classes
	Writing the image to a CD

	Installing an Application from a CD-ROM

	Using the DAR Command Line Tool
	dar convert: conversion of a WAR file to a DAR file
	dar import: importing a WAR or DAR file to the server
	dar export: exporting a bundle from the server as a DAR
	dar create: creating a DAR

	End User and Administrator Access
	An Overview of User Authentication and Authorization
	Authentication and Authorization Module Types
	Client-Side Authentication Module and Editor Classes
	Server-Side Authentication Module and Editor Classes
	Authorization Module and Editor Classes
	Group Authorization Module and Editor Classes
	Authorization Behavior and Allowable Bundle Version Names
	Authentication and Authorization Configuration Files

	End-User and Administrator Authentication Lists
	Viewing Authentication Lists
	Managing Authentication Lists
	Adding a new user to the authentication data file
	Modifying or deleting users in the authentication data file
	Adding new or existing groups to other authentication groups
	Adding users to authentication groups
	Deleting groups from the group authentication list

	Viewing End-User Bundle Associations
	Default and Alternate Views of End-User Associations
	Creating associations for future users or bundles

	Displaying Bundles
	Displaying Users and Groups
	Manually Adding Names to the Users and Groups List

	Selecting Bundle Versions

	Managing End-User Bundle Access
	Authorizing Users or Groups to Access Bundle Versions

	Viewing Administrator Roles
	Default and Alternate Views of Administrator Associations
	Authorizing future (nonexistent) administrators

	Displaying Users and Groups
	Changing the administrator Users and Groups source

	Managing Administrator Access
	Defining Bundle Administrators
	Assigning users to administrate specific bundles

	Defining Server Administrators
	Assigning users to be server administrators

	An Emphasis On Server Updating and Refreshing
	Customizing the Default Module and Editor Classes

	Viewing and Managing Logs
	Overview of DeployDirector Logs
	Clients Database
	Client Log
	Server Log
	Server Load Log

	Configuring Log Generation and Storage
	Configuring Logging Methods
	Setting local logging to flat file
	Setting cluster logging to a JDBC database

	Configuring Logging Limits
	Setting cluster level log limit properties

	Configuring Log Writing Frequency
	Setting the frequency of snapshots for the Clients database
	Setting the frequency of snapshots for the Server Load Log

	Overriding Cluster Logging Settings for a Server
	Overriding where the logging file is stored
	Overriding how often a server aggregates logs
	Overriding the frequency of Clients database snapshots
	Overriding when server load logs are sent
	Overriding logging limit properties

	Directing Email Error Reports
	Configuring Email Error Logging at the Cluster and Server Level
	Setting email error recipients at the cluster or server level

	Customizing Functionality with the SDK
	Deploying the SDK Files to Your Workstation
	Overview of SDK Components
	Client Application Classes (ddcam.jar)
	Getting Started with the Client Application Classes

	Copy of SAM JAR (ddsam.jar)
	Getting Started with the SAM JAR

	SDK Java Packages and API

	Adding Update Checking To Applications
	Important Note for Bundles
	CAMMenuItem and CAMJMenuItem Classes
	CAMAction Class

	Advanced Update Checking for Applications
	Other Useful CAMAccess Methods

	Client-Side and Server-Side Authentication
	Custom Authorization Modules
	Overview of the com.sitraka.deploy.authorization Package
	Creating a New Authorization Module
	Basic Authorization Assumptions
	Authorization-Handling Methods
	User / Version Data Editing Methods

	Using Secure Socket Encryption
	Overview of the com.sitraka.deploy.ssl Package
	Using JSSE, SSL-J or IAIK Encryption
	SAM-side:
	CAM-side (using the administration tool):

	Using a Site-Specific Encryption System

	Index

